A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5 × 1.7 mm2 with the emitter area of 16 × 1 μm × 15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5–84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

[1]  G. A. Ellis,et al.  W-band InP DHBT MMIC power amplifiers , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[2]  K. C. Hwang,et al.  W-band GaN power amplifier MMICs , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[3]  Danyu Wu,et al.  A Combined Model With Electrothermal Coupling and Electromagnetic Simulation for Microwave Multifinger InP-Based DHBTs , 2012, IEEE Transactions on Electron Devices.

[4]  A. Platzker,et al.  A rigorous yet simple method for determining stability of linear N-port networks [and MMIC application] , 1993, 15th Annual GaAs IC Symposium.

[5]  R. Jackson,et al.  Rollett Proviso in the Stability of Linear Microwave Circuits—A Tutorial , 2006, IEEE Transactions on Microwave Theory and Techniques.

[6]  R. G. Freitag,et al.  A unified analysis of MMIC power amplifier stability , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[7]  M. Urteaga,et al.  75 GHz 80 mW InP DHBT power amplifier , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[8]  P.M. Asbeck,et al.  Design of a 70 GHz Power Amplifier using a Digital InP HBT Process , 2007, 2007 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[9]  L. Xinyu,et al.  High Current Multi-finger InGaAs/InP Double Heterojunction Bipolar Transistor with the Maximum Oscillation Frequency 253 GHz , 2008 .

[10]  L. Xinyu,et al.  High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage , 2008 .

[11]  Munkyo Seo,et al.  G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers , 2005, IEEE Transactions on Microwave Theory and Techniques.

[12]  C. Monzon A small dual-frequency transformer in two sections , 2003 .

[13]  Y.C. Chen,et al.  A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier , 1999, 1999 IEEE Radio Frequency Integrated Circuits Symposium (Cat No.99CH37001).

[14]  S. A. Maas,et al.  Intermodulation in heterojunction bipolar transistors , 1991 .

[15]  Tomas OSullivan,et al.  Design of millimeter-wave power amplifiers using InP heterojunction bipolar transistors , 2009 .

[16]  A. Hek Design, realisation and test of GaAs-based monolithic integrated X-band high-power amplifiers , 2002 .

[17]  W. Struble,et al.  Instabilities diagnosis and the role of K in microwave circuits , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[18]  Shulan Li,et al.  A Dual-Frequency Transformer for Complex Impedances With Two Unequal Sections , 2009 .

[19]  75 GHz 13.92 dBm InP DHBT 共射共基功率放大器 , 2012 .

[20]  Cao Yuxiong,et al.  A symbolically defined InP double heterojunction bipolar transistor large-signal model , 2009 .