Multivariate Analysis and Spatial/Temporal Scales: Real and Complex Models

Comparing different scales in space or time the correlation between regionalized quantities can change substantially. Coregionalization models incorporate a description of the variation and covariation of a set of variables at different characteristic scales either in space or in time. Such models can be used as a device to explore the structure of multivariate spatial or temporal data in the framework of a regionalized multivariate data analysis. We review the work done using the classical Linear Model of Coregionalization (LMC) which is adequate to model sets of variograms and cross variograms as well as sets of covariance functions with even cross covariance functions. We also present a new generalization of the LMC due to Grzebyk (1993), the Bilinear Model of Coregionalization (BMC), which is suitable for modeling a coregionalization in space or along the time axis using cross covariance functions which are not even.

[1]  Anne Dong Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles , 1990 .

[2]  Hannes Flühler,et al.  Temporal change of spatially autocorrelated soil properties: optimal estimation by cokriging , 1994 .

[3]  Shahrokh Rouhani,et al.  Multivariate geostatistical approach to space‐time data analysis , 1990 .

[4]  P. Goovaerts Factorial kriging analysis: a useful tool for exploring the structure of multivariate spatial soil information , 1992 .

[5]  Gold prospecting with factorial cokriging in the Limousin, France , 1993 .

[6]  M. Grzebyk Ajustement d'une coregionalisation stationnaire , 1993 .

[7]  M. Voltz,et al.  Geostatistical Interpolation of Curves: A Case Study in Soil Science , 1993 .

[8]  L. Sandjivy The Factorial Kriging Analysis of Regionalized Data. Its Application to Geochemical Prospecting , 1984 .

[9]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[10]  A. Sousa Geostatistical Data Analysis — An Application to Ore Typology , 1989 .

[11]  A. Spector,et al.  STATISTICAL MODELS FOR INTERPRETING AEROMAGNETIC DATA , 1970 .

[12]  M. Stein Estimating and choosing , 1989 .

[13]  H. Wackernagel,et al.  A geostatistical method for segmenting multivariate sequences of soil data. , 1988 .

[14]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[15]  G. Raspa,et al.  Multivariate Geostatistics for Soil Classification , 1993 .

[16]  Pierre Goovaerts,et al.  Study of spatial relationships between two sets of variables using multivariate geostatistics , 1994 .

[17]  Jean Serra Les structures gigognes: morphologie mathématique et interprétation métallogénique , 1968 .

[18]  Pierre Petitgas,et al.  Overview of Methods for Coregionalization Analysis , 1989 .

[19]  Harald Cramer,et al.  On the Theory of Stationary Random Processes , 1940 .

[20]  Hans Wackernagel,et al.  Geostatistical Techniques for Interpreting Multivariate Spatial Information , 1988 .

[21]  John C. Davis,et al.  Computers in geology---25 years of progress , 1993 .

[22]  Pierre Goovaerts,et al.  Factorial kriging analysis of springwater contents in the Dyle River Basin, Belgium , 1993 .

[23]  P. Ruffo,et al.  Depth, Dip and Gradient , 1993 .

[24]  M. Goulard,et al.  Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix , 1992 .

[25]  D. Myers Pseudo-cross variograms, positive-definiteness, and cokriging , 1991 .

[26]  Dominique Jeulin,et al.  Application of Multivariate Kriging to the Processing of Noisy Images , 1989 .

[27]  H. Wackernagel Cokriging versus kriging in regionalized multivariate data analysis , 1994 .

[28]  M. Goulard,et al.  Inference in a Coregionalization Model , 1989 .

[29]  H. Künsch,et al.  On the pseudo cross-variogram , 1993 .

[30]  Denis Marcotte,et al.  Multivariable variogram and its application to the linear model of coregionalization , 1991 .