Mechanism of Action of Tethered Antimicrobial Peptides

[1]  Guangshun Wang,et al.  Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria , 2017, Biofouling.

[2]  Guangshun Wang,et al.  Individual and Combined Effects of Engineered Peptides and Antibiotics on Pseudomonas aeruginosa Biofilms , 2017, Pharmaceuticals.

[3]  Guangshun Wang,et al.  Host defense antimicrobial peptides as antibiotics: design and application strategies. , 2017, Current opinion in chemical biology.

[4]  Guangshun Wang,et al.  Design and surface immobilization of short anti-biofilm peptides. , 2017, Acta biomaterialia.

[5]  M. O. Pereira,et al.  Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces. , 2016, Acta biomaterialia.

[6]  Patrick J. Schimoler,et al.  Reducing Escherichia coli growth on a composite biomaterial by a surface immobilized antimicrobial peptide. , 2016, Materials science & engineering. C, Materials for biological applications.

[7]  B. Cammue,et al.  Antimicrobial Peptides as a Strategy to Combat Fungal Biofilms. , 2016, Current topics in medicinal chemistry.

[8]  M. O. Pereira,et al.  Bio-Inspired Coating Strategies for the Immobilization of Polymyxins to Generate Contact-Killing Surfaces. , 2016, Macromolecular bioscience.

[9]  Yaoxin Li,et al.  Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy. , 2016, Accounts of chemical research.

[10]  Robert E W Hancock,et al.  Synthetic antibiofilm peptides. , 2016, Biochimica et biophysica acta.

[11]  A. Simchi,et al.  High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core-Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide. , 2016, ACS applied materials & interfaces.

[12]  S. Pinto,et al.  High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. , 2016, Acta biomaterialia.

[13]  Emanuel Airton de Oliveira Farias,et al.  Immobilization of cationic antimicrobial peptides and natural cashew gum in nanosheet systems for the investigation of anti-leishmanial activity. , 2016, Materials science & engineering. C, Materials for biological applications.

[14]  Xia Li,et al.  APD3: the antimicrobial peptide database as a tool for research and education , 2015, Nucleic Acids Res..

[15]  T. Camesano,et al.  Proposed Mechanisms of Tethered Antimicrobial Peptide Chrysophsin-1 as a Function of Tether Length Using QCM-D. , 2015, The journal of physical chemistry. B.

[16]  S. H. North,et al.  Application of circular dichroism for structural analysis of surface-immobilized cecropin A interacting with lipoteichoic acid. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[17]  S. Leong,et al.  Global transcriptome analysis reveals distinct bacterial response towards soluble and surface-immobilized antimicrobial peptide (Lasioglossin-III) , 2015 .

[18]  M. Martins,et al.  Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. , 2015, Biomaterials.

[19]  Guangshun Wang,et al.  Antimicrobial Peptides in 2014 , 2015, Pharmaceuticals.

[20]  C. Pradier,et al.  Temporin‐SHa peptides grafted on gold surfaces display antibacterial activity , 2014, Journal of peptide science : an official publication of the European Peptide Society.

[21]  Guangshun Wang,et al.  Human Antimicrobial Peptides and Proteins , 2014, Pharmaceuticals.

[22]  C. Brooks,et al.  Different interfacial behaviors of peptides chemically immobilized on surfaces with different linker lengths and via different termini. , 2014, The journal of physical chemistry. B.

[23]  C. Pradier,et al.  Co-grafting of amino-poly(ethylene glycol) and Magainin I on a TiO2 surface: tests of antifouling and antibacterial activities. , 2012, The journal of physical chemistry. B.

[24]  I. Ivanov,et al.  Creating antibacterial surfaces with the peptide chrysophsin-1. , 2012, ACS applied materials & interfaces.

[25]  R. Hancock,et al.  Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide. , 2012, Chemistry & biology.

[26]  M. Dathe,et al.  Mode of action of cationic antimicrobial peptides defines the tethering position and the efficacy of biocidal surfaces. , 2012, Bioconjugate chemistry.

[27]  Wuyuan Lu,et al.  α‐Defensins in human innate immunity , 2012, Immunological reviews.

[28]  Robert E W Hancock,et al.  Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. , 2011, Biomacromolecules.

[29]  M Cristina L Martins,et al.  Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. , 2011, Acta biomaterialia.

[30]  C. Fjell,et al.  Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. , 2009, Chemistry & biology.

[31]  M. Dathe,et al.  Immobilization Reduces the Activity of Surface-Bound Cationic Antimicrobial Peptides with No Influence upon the Activity Spectrum , 2008, Antimicrobial Agents and Chemotherapy.

[32]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[33]  H. G. Boman,et al.  Antibacterial peptides: basic facts and emerging concepts , 2003, Journal of internal medicine.

[34]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[35]  S. Reiling,et al.  Surface immobilization of antimicrobial peptides to prevent biofilm formation. , 2017 .

[36]  S. H. North,et al.  Secondary Structure Determination of Peptides and Proteins After Immobilization. , 2016, Methods in molecular biology.

[37]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..