Semiclassical measure for the solution of the Helmholtz equation with an unbounded source

We study the high frequency limit for the dissipative Helmholtz equation when the source term concentrates on a submanifold of R n . We prove that the solution has a unique semi-classical measure, which is precisely described in terms of the classical properties of the problem. This result is already known when the micro-support of the source is bounded, we now consider the general case. 1. Statement of the result We consider on R n the Helmholtz equation

[1]  Elise Fouassier High Frequency Analysis of Helmholtz Equations: Case of Two Point Sources , 2006, SIAM J. Math. Anal..

[2]  J. Royer Uniform resolvent estimates for a non-dissipative Helmholtz equation , 2011, 1103.3868.

[3]  I. Holopainen Riemannian Geometry , 1927, Nature.

[4]  J. Royer Limiting Absorption Principle for the Dissipative Helmholtz Equation , 2009, 0905.0355.

[5]  D. Robert,et al.  Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections , 1987 .

[6]  J. Bony Mesures limites pour l'equation de Helmholtz dans le cas non captif , 2007, 0707.0829.

[7]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[8]  D. Robert,et al.  Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits , 1989 .

[9]  Olof Runborg,et al.  HIGH FREQUENCY LIMIT OF THE HELMHOLTZ EQUATION. II. SOURCE ON A GENERAL SMOOTH MANIFOLD , 2002 .

[10]  Franccois Castella,et al.  The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach , 2005, math/0503331.

[11]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[12]  E. Fouassier High frequency limit of Helmholtz equations : refraction by sharp interfaces , 2007 .

[13]  P. Gérard,et al.  Mesures semi-classiques et ondes de Bloch , 1991 .

[14]  C. Gérard,et al.  Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée , 1988 .

[15]  Xue-Ping Wang Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators , 1988 .

[16]  Aur'elien Klak,et al.  Radiation condition at infinity for the high-frequency Helmholtz equation: optimality of a non-refocusing criterion , 2012, 1204.1477.

[17]  Alberto Rosso,et al.  Spatial extent of an outbreak in animal epidemics , 2013, Proceedings of the National Academy of Sciences.

[18]  J. Royer Semiclassical measure for the solution of the dissipative Helmholtz equation , 2009, 0911.4362.

[19]  Xue Ping Wang,et al.  High-frequency limit of the Helmholtz equation with variable refraction index , 2006 .

[20]  Jean-David Benamou,et al.  High frequency limit of the Helmholtz equations. , 2002 .