Semiclassical measure for the solution of the Helmholtz equation with an unbounded source
暂无分享,去创建一个
[1] Elise Fouassier. High Frequency Analysis of Helmholtz Equations: Case of Two Point Sources , 2006, SIAM J. Math. Anal..
[2] J. Royer. Uniform resolvent estimates for a non-dissipative Helmholtz equation , 2011, 1103.3868.
[3] I. Holopainen. Riemannian Geometry , 1927, Nature.
[4] J. Royer. Limiting Absorption Principle for the Dissipative Helmholtz Equation , 2009, 0905.0355.
[5] D. Robert,et al. Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections , 1987 .
[6] J. Bony. Mesures limites pour l'equation de Helmholtz dans le cas non captif , 2007, 0707.0829.
[7] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[8] D. Robert,et al. Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits , 1989 .
[9] Olof Runborg,et al. HIGH FREQUENCY LIMIT OF THE HELMHOLTZ EQUATION. II. SOURCE ON A GENERAL SMOOTH MANIFOLD , 2002 .
[10] Franccois Castella,et al. The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave-packet approach , 2005, math/0503331.
[11] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[12] E. Fouassier. High frequency limit of Helmholtz equations : refraction by sharp interfaces , 2007 .
[13] P. Gérard,et al. Mesures semi-classiques et ondes de Bloch , 1991 .
[14] C. Gérard,et al. Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée , 1988 .
[15] Xue-Ping Wang. Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators , 1988 .
[16] Aur'elien Klak,et al. Radiation condition at infinity for the high-frequency Helmholtz equation: optimality of a non-refocusing criterion , 2012, 1204.1477.
[17] Alberto Rosso,et al. Spatial extent of an outbreak in animal epidemics , 2013, Proceedings of the National Academy of Sciences.
[18] J. Royer. Semiclassical measure for the solution of the dissipative Helmholtz equation , 2009, 0911.4362.
[19] Xue Ping Wang,et al. High-frequency limit of the Helmholtz equation with variable refraction index , 2006 .
[20] Jean-David Benamou,et al. High frequency limit of the Helmholtz equations. , 2002 .