Approximate maximum likelihood frequency estimation

The high-resolution frequency estimators most commonly used, such as MUSIC, ESPRIT and Yule-Walker, determine estimates of the sinusoidal frequencies from the sample covariances of noise-corrupted data. In this paper, a frequency estimation method termed Approximate Maximum Likelihood (AML) is derived from the approximate likelihood function of sample covariances. The statistical performance of AML is studied, both analytically and numerically, and compared with the Cramer-Rao bound as well as the statistical performance corresponding to the aforementioned methods of frequency estimation. AML is shown to provide the minimum asymptotic error variance in the class of all estimators based on a given set of covariances. The implementation of the AML frequency estimator is discussed in detail. The paper also introduces an AML-based procedure for estimating the number of sinusoidal signals in the measured data, which is shown to possess high detection performance.

[1]  Petre Stoica,et al.  An asymptotically efficient ARMA estimator based on sample covariances , 1986 .

[2]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[3]  Petre Stoica,et al.  Approximate maximum-likelihood approach to ARMA spectral estimation , 1987 .

[4]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[5]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  Ilan Ziskind,et al.  Maximum likelihood localization of multiple sources by alternating projection , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[8]  Torsten Söderström,et al.  Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies , 1991, IEEE Trans. Signal Process..

[9]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[10]  Benjamin Friedlander,et al.  Bounds on the accuracy of Gaussian ARMA parameter estimation methods based on sample covariances , 1986 .

[11]  Jean-Jacques Fuchs Estimation of Parameters of Real Sinusoids in Noise , 1992 .

[12]  Petre Stoica List of references on spectral line analysis , 1993, Signal Process..

[13]  Petre Stoica,et al.  Accuracy of high-order Yule-Walker methods for frequency estimation of complex sine waves , 1993 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  R. R. Boorstyn,et al.  Multiple tone parameter estimation from discrete-time observations , 1976, The Bell System Technical Journal.

[16]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[17]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[18]  V U Reddy,et al.  Modified Forward-Backward Linear Prediction: Improvements and Criterion for Detection of the Number of Sinusoids , 1989 .

[19]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[20]  Bjorn Ottersten,et al.  Detection and Estimation in Sensor Arrays Using , 1991 .

[21]  Björn E. Ottersten,et al.  Detection and estimation in sensor arrays using weighted subspace fitting , 1991, IEEE Trans. Signal Process..

[22]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[23]  Lester A. Gerhardt,et al.  A robust spectral estimation by modeling an estimated autocovariance with an ARMA model , 1989, IEEE Trans. Acoust. Speech Signal Process..

[24]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[25]  Petre Stoica,et al.  An Asymptotically Efficient ARMA Estimator Based on , 1986 .

[26]  S. Bruzzone,et al.  Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation , 1984 .

[27]  Jean-Jacques Fuchs,et al.  Estimating the number of sinusoids in additive white noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[28]  Petre Stoica,et al.  Optimization with respect to covariance sequence parameters , 1985, Autom..

[29]  A. A. Beex,et al.  Covariance sequence approximation for parametric spectrum modeling , 1981 .

[30]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[31]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[32]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .