Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum

Epigenome profiling has led to the paradigm that promoters of active genes are decorated with H3K4me3 and H3K9ac marks. To explore the epigenome of Plasmodium falciparum asexual stages, we performed MS analysis of histone modifications and found a general preponderance of H3/H4 acetylation and H3K4me3. ChIP-on-chip profiling of H3, H3K4me3, H3K9me3, and H3K9ac from asynchronous parasites revealed an extensively euchromatic epigenome with heterochromatin restricted to variant surface antigen gene families (VSA) and a number of genes hitherto unlinked to VSA. Remarkably, the vast majority of the genome shows an unexpected pattern of enrichment of H3K4me3 and H3K9ac. Analysis of synchronized parasites revealed significant developmental stage specificity of the epigenome. In rings, H3K4me3 and H3K9ac are homogenous across the genes marking active and inactive genes equally, whereas in schizonts, they are enriched at the 5′ end of active genes. This study reveals an unforeseen and unique plasticity in the use of the epigenetic marks and implies the presence of distinct epigenetic pathways in gene silencing/activation throughout the erythrocytic cycle.

[1]  Jose-Juan Lopez-Rubio,et al.  Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. , 2009, Cell host & microbe.

[2]  C. Ouzounis,et al.  Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. , 2004, Genome research.

[3]  Thanat Chookajorn,et al.  Epigenetic memory at malaria virulence genes , 2007, Proceedings of the National Academy of Sciences.

[4]  Manoj T. Duraisingh,et al.  Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum , 2005, Cell.

[5]  R. Young,et al.  A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells , 2007, Cell.

[6]  S. Schreiber,et al.  Development and validation of a T7 based linear amplification for genomic DNA , 2003, BMC Genomics.

[7]  L. Aravind,et al.  Plasmodium Biology Genomic Gleanings , 2003, Cell.

[8]  N. Friedman,et al.  Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae , 2005, PLoS biology.

[9]  Martin Radolf,et al.  The profile of repeat‐associated histone lysine methylation states in the mouse epigenome , 2005, The EMBO journal.

[10]  A. Scherf,et al.  Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra‐erythrocytic development in Plasmodium falciparum , 1998, The EMBO journal.

[11]  J. Martens,et al.  Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. , 2003, Molecular cell.

[12]  Bradley I. Coleman,et al.  Transcriptional control and gene silencing in Plasmodium falciparum , 2008, Cellular microbiology.

[13]  Kevin Struhl,et al.  Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. , 2003, Molecular cell.

[14]  A. Cowman,et al.  A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria , 2006, Nature.

[15]  S. Martínez-Calvillo,et al.  Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes , 2009, Nucleic acids research.

[16]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[17]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[18]  Charles Kooperberg,et al.  The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. , 2004, Genes & development.

[19]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[20]  S. Kyes,et al.  Variable var transition rates underlie antigenic variation in malaria. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Garcia,et al.  Organismal Differences in Post-translational Modifications in Histones H3 and H4* , 2007, Journal of Biological Chemistry.

[22]  Danny Reinberg,et al.  A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. , 2004, Genes & development.

[23]  R. Emes,et al.  Control of gene expression in Plasmodium falciparum - ten years on. , 2009, Molecular and biochemical parasitology.

[24]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[25]  Matthias Mann,et al.  Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4 , 2007, Cell.

[26]  Alisson M. Gontijo,et al.  Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites , 2005, Cell.

[27]  M. Hakimi,et al.  Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. , 2007, Current opinion in microbiology.

[28]  Bing Li,et al.  Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription , 2005, Cell.

[29]  Alisson M. Gontijo,et al.  5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites , 2007, Molecular microbiology.

[30]  H. Stunnenberg,et al.  Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. , 2009, Journal of proteome research.

[31]  E. Berdougo,et al.  Strict Pairing of var Promoters and Introns Is Required for var Gene Silencing in the Malaria Parasite Plasmodium falciparum* , 2006, Journal of Biological Chemistry.

[32]  Andrew R. Gehrke,et al.  Specific DNA-binding by Apicomplexan AP2 transcription factors , 2008, Proceedings of the National Academy of Sciences.

[33]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[34]  H. Masumoto,et al.  Histone H3 Lysine 56 Acetylation: A New Twist in the Chromosome Cycle , 2006, Cell cycle.

[35]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[36]  K. Gull,et al.  The Plasmodium cell-cycle: facts and questions. , 1998, Annals of tropical medicine and parasitology.

[37]  Krystyna A. Kelly,et al.  Epigenomic Modifications Predict Active Promoters and Gene Structure in Toxoplasma gondii , 2007, PLoS pathogens.

[38]  Eric S. Lander,et al.  Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse , 2005, Cell.

[39]  Zhiguo Zhang,et al.  Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly , 2008, Cell.

[40]  Jun Miao,et al.  PfGCN5-Mediated Histone H3 Acetylation Plays a Key Role in Gene Expression in Plasmodium falciparum , 2007, Eukaryotic Cell.

[41]  Tony Kouzarides,et al.  Histone H3 lysine 4 methylation patterns in higher eukaryotic genes , 2004, Nature Cell Biology.