Learning the face space-representation and recognition

This paper advances an integrated learning and evolutionary computation methodology for approaching the task of learning the face space. The methodology is geared to provide a framework whereby enhanced and robust face coding and classification schemes can be derived and evaluated using both machine and human benchmark studies. In particular we take an interdisciplinary approach, drawing from the accumulated and vast knowledge of both the computer vision and psychology communities, and describe how evolutionary computation and statistical learning can engage in mutually beneficial relationships in order to define an exemplar (absolute)-based coding of multidimensional face space representation for successfully coping with changing population (face) types, and to leverage past experience for incremental face space definition.

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[3]  John R. Vokey,et al.  The Face-Space Typicality Paradox: Understanding the Face-Space Metaphor , 1998 .

[4]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[5]  David Beymer,et al.  Vectorizing Face Images by Interleaving Shape and Texture Computations , 1995 .

[6]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[7]  Nathan Intrator,et al.  Learning as Extraction of Low-Dimensional Representations , 1997 .

[8]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[9]  Chengjun Liu,et al.  Enhanced Fisher linear discriminant models for face recognition , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[10]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[11]  Gillian Rhodes,et al.  Coding spatial variations in faces and simple shapes: a test of two models , 1998, Vision Research.

[12]  Chengjun Liu,et al.  Face recognition using shape and texture , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[13]  Chengjun Liu,et al.  Probabilistic reasoning models for face recognition , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[14]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[15]  J. Davenport Editor , 1960 .

[16]  P. Comon Independent Component Analysis , 1992 .

[17]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[18]  D. Donoho,et al.  Basis pursuit , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[19]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[20]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[21]  Alice J. O'Toole,et al.  Low-dimensional representation of faces in higher dimensions of the face space , 1993 .

[22]  Chengjun Liu,et al.  Face Recognition Using Evolutionary Pursuit , 1998, ECCV.

[23]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[24]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Erkki Oja,et al.  Unsupervised learning in neural computation , 2002, Theor. Comput. Sci..

[26]  Timothy F. Cootes,et al.  Automatic Interpretation and Coding of Face Images Using Flexible Models , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  John Daugman,et al.  An information-theoretic view of analog representation in striate cortex , 1993 .

[28]  Nicholas Costen,et al.  How Should We RepresentFaces for Automatic Recognition? , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  T. Valentine The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology a Unified Account of the Effects of Distinctiveness, Inversion, and Race in Face Recognition , 2022 .

[30]  Timothy F. Cootes,et al.  Face Recognition Using Active Appearance Models , 1998, ECCV.

[31]  William K. Estes,et al.  Concepts, Categories, and Psychological Science , 1993 .

[32]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  L. Squire,et al.  The learning of categories: parallel brain systems for item memory and category knowledge. , 1993, Science.

[35]  A. Agresti Categorical data analysis , 1993 .

[36]  F. Keil,et al.  Categorical effects in the perception of faces , 1995, Cognition.

[37]  Jonathan Phillips,et al.  Matching pursuit filters applied to face identification , 1994, Optics & Photonics.

[38]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[39]  Chengjun Liu,et al.  Robust coding schemes for indexing and retrieval from large face databases , 2000, IEEE Trans. Image Process..

[40]  Peter J. B. Hancock,et al.  From Pixels to People: A Model of Familiar Face Recognition , 1999 .

[41]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[42]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[43]  H. Wechsler,et al.  Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition , 1999 .

[44]  A C C Gibbs,et al.  Data Analysis , 2009, Encyclopedia of Database Systems.

[45]  T. Poggio,et al.  I think I know that face... , 1996, Nature.

[46]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.