Controlling smart matter

We study the behavior of several organizations for distributed control of unstable physical systems and show how a hierarchical organization is a reasonable compromise between rapid local responses with simple communication and the use of global knowledge. This holds not only in ideal situations but also when imperfections and delays are present in the system. We also introduce a new control organization, the multihierarchy, and show it is better than a hierarchy in achieving stability. The multihierarchy also has a position invariant response that can control disturbances at the appropriate scale and location.

[1]  Mohammad Aldeen,et al.  Stabilization of decentralized control systems , 1997 .

[2]  S. Clearwater Market-based control: a paradigm for distributed resource allocation , 1996 .

[3]  E. Smela,et al.  Controlled Folding of Micrometer-Size Structures , 1995, Science.

[4]  Tad Hogg,et al.  Communities of practice: Performance and evolution , 1994, Comput. Math. Organ. Theory.

[5]  Tad Hogg,et al.  Dilemmas in Computational Societies , 1995, ICMAS.

[6]  J. Bryzek,et al.  Micromachines on the march , 1994, IEEE Spectrum.

[7]  K. Nagel LIFE TIMES OF SIMULATED TRAFFIC JAMS , 1993, cond-mat/9310018.

[8]  Andrew A. Berlin,et al.  Towards intelligent structures: active control of buckling , 1994 .

[9]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[10]  Carl A. Waldspurger,et al.  Enterprise: a Market-like Task Scheduler for Distributed Computing Environments. [2] A. Barak and A. Shiloh. a Distributed Load-balancing Policy for a Multicomputer. Software Practice Load Balancing for Massively-parallel Soft-real-time Systems. Knowledge Systems Lab- Iteration Step Figure 13: Fairn , 1991 .

[11]  David Upton,et al.  A Flexible Structure for Computer-Controlled Manufacturing Systems , 1992 .

[12]  Tad Hogg,et al.  Controlling chaos in distributed systems , 1991, IEEE Trans. Syst. Man Cybern..

[13]  Jonathan P. How,et al.  Local control design methodologies for a hierarchic control architecture , 1991 .

[14]  Jonathan P. How,et al.  Hierarchic Control Architecture for Intelligent Structures , 1991 .

[15]  Edmund H. Durfee,et al.  THE DISTRIBUTED ARTIFICIAL INTELLIGENCE MELTING POT , 1991 .

[16]  William H. Press,et al.  Numerical recipes , 1990 .

[17]  Mohammed S El Naschie,et al.  Stress, Stability and Chaos in Structural Engineering: An Energy Approach , 1990 .

[18]  Hogg,et al.  Dynamics of computational ecosystems. , 1989, Physical review. A, General physics.

[19]  G. Marsaglia,et al.  Numerical solution of some classical differential-difference equations , 1989 .

[20]  B. Huberman,et al.  The stability of ecosystems , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[21]  Bernardo A. Huberman,et al.  The ecology of computation , 1988, Digest of Papers. COMPCON Spring 89. Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage.

[22]  G. Virk Runge Kutta method for delay-differential systems , 1985 .

[23]  G. Perry,et al.  Sensor-based robotic assembly systems: Research and applications in electronic manufacturing , 1983, Proceedings of the IEEE.

[24]  Ferenc Juhász,et al.  On the asymptotic behaviour of the spectra of non-symmetric random (0, 1) matrices , 1982, Discret. Math..

[25]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[26]  Michael Woodroofe,et al.  Probability with applications , 1976 .

[27]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[28]  J. Hartigan REPRESENTATION OF SIMILARITY MATRICES BY TREES , 1967 .

[29]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .