Operator Valued Fourier Multipliers
暂无分享,去创建一个
[1] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[2] M. Christ. Lectures on singular integral operators , 1991 .
[3] Herbert Amann,et al. Operator‐Valued Fourier Multipliers, Vector ‐ Valued Besov Spaces, and Applications , 1997 .
[4] J. Schwartz. A remark on inequalities of Calderon-Zygmund type for vector-valued functions , 1961 .
[5] A. Calderón,et al. CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[6] J. Bourgain. Extension of a result of Benedek, Calderón and Panzone , 1984 .
[7] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[8] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[9] Giovanni Dore,et al. On the closedness of the sum of two closed operators , 1987 .
[10] J. Prüss. Evolutionary Integral Equations And Applications , 1993 .
[11] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[12] Herbert Amann,et al. Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.
[13] L. Hörmander,et al. Estimates for translation invariant operators inLp spaces , 1960 .
[14] J. Torrea,et al. Calderón-Zygmund theory for operator-valued kernels , 1986 .
[15] T. McConnell,et al. On Fourier multiplier transformations of Banach-valued functions , 1984 .
[16] B. Schulze. Pseudo-Differential Operators on Manifolds with Singularities , 1991 .
[17] E. Stein. Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .
[18] F. Zimmermann. On vector-valued Fourier multiplier theorems , 1989 .
[19] Matthias Hieber,et al. Integrated semigroups and differential operators onLp spaces , 1991 .