The interactive analysis of the multicriteria shortest path problem by the reference point method

Abstract The multicriteria shortest path problem is considered. The paper presents the interactive method of analyzing this problem by the reference point approach. The reference point guided labeling algorithm was developed. This algorithm finds the Pareto-optimal shortest path which is best attuned to the specified preferences.

[1]  Marek Makowski,et al.  Interactive specification and analysis of aspiration-based preferences , 2000, Eur. J. Oper. Res..

[2]  I. Murthy,et al.  A parametric approach to solving bicriterion shortest path problems , 1991 .

[3]  Kikuo Fujimura Path planning with multiple objectives , 1996, IEEE Robotics Autom. Mag..

[4]  E. Martins,et al.  A bicriterion shortest path algorithm , 1982 .

[5]  Andrzej P. Wierzbick Basic properties of scalarizmg functionals for multiobjective optimization , 1977 .

[6]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[7]  Ralph E. Steuer,et al.  A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming , 1997, Oper. Res..

[8]  E. Martins On a multicriteria shortest path problem , 1984 .

[9]  John R. Current,et al.  Multiobjective transportation network design and routing problems: Taxonomy and annotation , 1993 .

[10]  Simon French,et al.  Multiple Criteria Decision Making: Theory and Application , 1981 .

[11]  H. Moskowitz,et al.  Generalized dynamic programming for multicriteria optimization , 1990 .

[12]  Arthur Warburton,et al.  Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems , 1987, Oper. Res..

[13]  Y. Haimes,et al.  Multiobjectives in water resource systems analysis: The Surrogate Worth Trade Off Method , 1974 .

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  D. Bertsekas,et al.  Parallel asynchronous label-correcting methods for shortest paths , 1996 .

[16]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[17]  Kim Allan Andersen,et al.  A label correcting approach for solving bicriterion shortest-path problems , 2000, Comput. Oper. Res..

[18]  J. Granat,et al.  Interactive Specification of DSS User Preferences in Terms of Fuzzy Sets , 1994 .

[19]  Hokey Min,et al.  Multiobjective design of transportation networks: taxonomy and annotation , 1986 .

[20]  C. T. Tung,et al.  A multicriteria Pareto-optimal path algorithm , 1992 .

[21]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[22]  Rajan Batta,et al.  Optimal Obnoxious Paths on a Network: Transportation of Hazardous Materials , 1988, Oper. Res..

[23]  I. Murthy,et al.  An interactive procedure using domination cones for bicriterion shortest path problems , 1994 .

[24]  A. A. Elimam,et al.  Two engineering applications of a constrained shortest-path model , 1997 .

[25]  H. P. Benson,et al.  A face search heuristic algorithm for optimizing over the efficient set , 1993 .

[26]  Darwin Klingman,et al.  NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .

[27]  Anna Sciomachen,et al.  A utility measure for finding multiobjective shortest paths in urban multimodal transportation networks , 1998, Eur. J. Oper. Res..

[28]  João C. N. Clímaco,et al.  An interactive bi-objective shortest path approach: searching for unsupported nondominated solutions , 1999, Comput. Oper. Res..

[29]  Marek Makowski,et al.  Model-Based Decision Support Methodology with Environmental Applications , 2000 .

[30]  H. P. Benson,et al.  A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set , 1992 .

[31]  Jared L. Cohon,et al.  An interactive approach to identify the best compromise solution for two objective shortest path problems , 1990, Comput. Oper. Res..

[32]  Jared L. Cohon,et al.  THE MEDIAN SHORTEST PATH PROBLEM : A MULTIOBJECTIVE APPROACH TO ANALYZE COST VS. ACCESSIBILITY IN THE DESIGN OF TRANSPORTATION NETWORKS , 1987 .

[33]  Dimitri P. Bertsekas,et al.  A simple and fast label correcting algorithm for shortest paths , 1993, Networks.

[34]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[35]  Harold P. Benson,et al.  A bisection-extreme point search algorithm for optimizing over the efficient set in the linear dependence case , 1993, J. Glob. Optim..

[36]  D. Shier,et al.  An empirical investigation of some bicriterion shortest path algorithms , 1989 .