On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials

We prove that the solution of the Vlasov-Fokker-Planck equation converges to the unique stationary solution with same mass as time tends to infinity. The same result holds in the repulsive coulombic case for the Vlasov-Poisson-Fokker-Planck system; the newtonian attractive case is also studied. We establish positive and negative answers to the question of existence of a stationary solution for the last problem by examining the Poisson-Boltzmann equation.

[1]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[2]  Subrahmanyan Chandrasekhar,et al.  Brownian Motion, Dynamical Friction, and Stellar Dynamics , 1949 .

[3]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[4]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[5]  P. Degond Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .

[6]  H. Neunzert,et al.  Stationary solutions of the vlasov‐fokker‐planck equation , 1987 .

[7]  E. Horst Global strong solutions of Vlasov's equation---necessary and sufficient conditions for their existence , 1987 .

[8]  P. Lions,et al.  On the Fokker-Planck-Boltzmann equation , 1988 .

[9]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[10]  P. Lions,et al.  Solutions globales d'équations du type Vlasov-Poisson , 1988 .

[11]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[12]  D. Gogny,et al.  Sur les états d'équilibre pour les densités électroniques dans les plasmas , 1989 .

[13]  M. Kiessling On the equilibrium statistical mechanics of isothermal classical self-gravitating matter , 1989 .

[14]  Thanu Padmanabhan,et al.  Statistical mechanics of gravitating systems , 1990 .

[15]  H. Victory,et al.  On classical solutions of Vlasov-Poisson Fokker-Planck systems , 1990 .

[16]  K. Dressler Steady states in plasma physics—the Vlasov–Fokker–Planck equation , 1990 .

[17]  Jean Dolbeault STATIONARY STATES IN PLASMA PHYSICS: MAXWELLIAN SOLUTIONS OF THE VLASOV-POISSON SYSTEM , 1991 .

[18]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[19]  Laurent Desvillettes,et al.  On long time asymptotics of the vlasov—poisson—boltzmann equation , 1991 .

[20]  Some results concerning the Poisson-Boltzmann equation , 1991 .

[21]  F. Bouchut,et al.  Global weak solution of the Vlasov-Poisson system for small electrons mass , 1991 .

[22]  François Bavaud,et al.  Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation , 1991 .

[23]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[24]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[25]  G. Rein,et al.  Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions , 1992 .

[26]  François Bouchut,et al.  Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions , 1993 .

[27]  Pierre-Louis Lions,et al.  On Boltzmann and Landau equations , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[28]  F. Bouchut Smoothing Effect for the Non-linear Vlasov-Poisson-Fokker-Planck System , 1995 .