On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials
暂无分享,去创建一个
[1] S. Chandrasekhar. Stochastic problems in Physics and Astronomy , 1943 .
[2] Subrahmanyan Chandrasekhar,et al. Brownian Motion, Dynamical Friction, and Stellar Dynamics , 1949 .
[3] B. Gidas,et al. Symmetry and related properties via the maximum principle , 1979 .
[4] B. Gidas,et al. Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .
[5] P. Degond. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .
[6] H. Neunzert,et al. Stationary solutions of the vlasov‐fokker‐planck equation , 1987 .
[7] E. Horst. Global strong solutions of Vlasov's equation---necessary and sufficient conditions for their existence , 1987 .
[8] P. Lions,et al. On the Fokker-Planck-Boltzmann equation , 1988 .
[9] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[10] P. Lions,et al. Solutions globales d'équations du type Vlasov-Poisson , 1988 .
[11] P. Lions,et al. Ordinary differential equations, transport theory and Sobolev spaces , 1989 .
[12] D. Gogny,et al. Sur les états d'équilibre pour les densités électroniques dans les plasmas , 1989 .
[13] M. Kiessling. On the equilibrium statistical mechanics of isothermal classical self-gravitating matter , 1989 .
[14] Thanu Padmanabhan,et al. Statistical mechanics of gravitating systems , 1990 .
[15] H. Victory,et al. On classical solutions of Vlasov-Poisson Fokker-Planck systems , 1990 .
[16] K. Dressler. Steady states in plasma physics—the Vlasov–Fokker–Planck equation , 1990 .
[17] Jean Dolbeault. STATIONARY STATES IN PLASMA PHYSICS: MAXWELLIAN SOLUTIONS OF THE VLASOV-POISSON SYSTEM , 1991 .
[18] Pierre-Louis Lions,et al. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .
[19] Laurent Desvillettes,et al. On long time asymptotics of the vlasov—poisson—boltzmann equation , 1991 .
[20] Some results concerning the Poisson-Boltzmann equation , 1991 .
[21] F. Bouchut,et al. Global weak solution of the Vlasov-Poisson system for small electrons mass , 1991 .
[22] François Bavaud,et al. Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation , 1991 .
[23] K. Pfaffelmoser,et al. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .
[24] Emanuele Caglioti,et al. A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .
[25] G. Rein,et al. Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions , 1992 .
[26] François Bouchut,et al. Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions , 1993 .
[27] Pierre-Louis Lions,et al. On Boltzmann and Landau equations , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[28] F. Bouchut. Smoothing Effect for the Non-linear Vlasov-Poisson-Fokker-Planck System , 1995 .