Integrated Precise Orbit Determination of Multi-GNSS and Large LEO Constellations

[1]  Xin Li,et al.  Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo , 2018, Journal of Geodesy.

[2]  Richard Biancale,et al.  Multi-technique combination of space geodesy observations: Impact of the Jason-2 satellite on the GPS satellite orbits estimation , 2016 .

[3]  Qinghua Zhang,et al.  Validation of enhanced orbit determination for GPS satellites with LEO GPS data considering multi ground station networks , 2019 .

[4]  Xin Li,et al.  Improved PPP Ambiguity Resolution with the Assistance of Multiple LEO Constellations and Signals , 2019, Remote. Sens..

[5]  R. Biancale,et al.  Improvement of the empirical thermospheric model DTM: DTM94 – a comparative review of various temporal variations and prospects in space geodesy applications , 1998 .

[6]  Rolf König,et al.  Dynamic model orbits and Earth system parameters from combined GPS and LEO data , 2005 .

[7]  Xingxing Li,et al.  LEO constellation-augmented multi-GNSS for rapid PPP convergence , 2018, Journal of Geodesy.

[8]  Yongqiang Yuan,et al.  Integrated Orbit Determination of FengYun‐3C, BDS, and GPS Satellites , 2018, Journal of Geophysical Research: Solid Earth.

[9]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[10]  Chao Xiong,et al.  The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities , 2016 .

[11]  Benjamin Männel,et al.  Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations , 2017, Journal of Geodesy.

[12]  Xin Li,et al.  GNSS RTK Positioning Augmented with Large LEO Constellation , 2019, Remote. Sens..

[13]  Jing Guo,et al.  Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality , 2017, GPS Solutions.

[14]  Laiping Feng,et al.  Monitoring and Assessment of GNSS Open Services , 2011, Journal of Navigation.

[15]  Harald Schuh,et al.  Estimating the yaw-attitude of BDS IGSO and MEO satellites , 2015, Journal of Geodesy.

[16]  Xiaohong Zhang,et al.  Timing group delay and differential code bias corrections for BeiDou positioning , 2015, Journal of Geodesy.

[17]  Peter Steigenberger,et al.  The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) - Achievements, prospects and challenges , 2017 .

[18]  Harald Schuh,et al.  Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS) , 2018, Remote. Sens..

[19]  L. Mervart,et al.  Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results , 1994, manuscripta geodaetica.

[20]  O. Montenbruck,et al.  Enhanced solar radiation pressure modeling for Galileo satellites , 2015, Journal of Geodesy.

[21]  Qile Zhao,et al.  Initial results of precise orbit and clock determination for COMPASS navigation satellite system , 2013, Journal of Geodesy.

[22]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[23]  Harald Schuh,et al.  LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services , 2019, Advances in Space Research.

[24]  R. König,et al.  Integrated adjustment of CHAMP, GRACE, and GPS data , 2004 .

[25]  Mark B. Moldwin,et al.  Global plasmaspheric TEC and its relative contribution to GPS TEC , 2008 .

[26]  Pieter Visser,et al.  Precise science orbits for the Swarm satellite constellation , 2015 .

[27]  Jinling Wang,et al.  Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX) , 2016, GPS Solutions.

[28]  H. Boomkamp,et al.  Use of double difference observations in combined orbit solutions for LEO and GPS satellites , 2005 .