Optimal quadrature problem on classes defined by kernels satisfying certain oscillation properties

AbstractWe consider some classes of 2π-periodic functions defined by a class of operators having certain oscillation properties, which include the classical Sobolev class and a class of analytic functions which can not be represented as a convolution class as its special cases. Let $$\lfloor{x}\rfloor$$ be the largest integer not bigger than x. We prove that on these classes of functions the rectangular formula $$Q^*_N(f) = \frac{2\pi}{N}\sum_{j=0}^{N-1} f\left(\frac{2\pi j}{N}\right)$$ is optimal among all quadrature formulae of the form $$Q_{2N}(f) = \sum_{i=1}^{n}\sum_{j=0}^{\nu_{i}-1}a_{ij}f^{(j)}(t_{i}),$$ where the nodes 0 ≤  t1 < ... < tn < 2π and the coefficients (weights) $$a_{ij}\in \mathbb{R}$$ are arbitrary, i = 1,...,n, j = 0,1,..., νi − 1, and (ν1,...,νn) is a system of positive integers satisfying the condition $$\mathop{\sum}_{i=1}^{n}2\lfloor{(\nu_i+1)/2}\rfloor\leq 2N$$. In particular, the rectangular formula is optimal for these classes of functions among all quadrature formulae of the form $$Q_N(f) = \sum_{i=1}^{N}a_{i}f(t_{i}),$$ with free nodes 0 ≤  t1 <  ... < tN <  2π and arbitrary weights $$a_{i}\in \mathbb{R}, i=1,\ldots,N$$. Moreover, we exactly determine the error estimates of the optimal quadrature formulae on these classes of functions.

[1]  Exact Values of N-Widths and Optimal Quadratures on Classes of Bounded Analytic and Harmonic Functions , 1995 .

[2]  V. Ivanov,et al.  Exact Constants in Approximation Theory , 1991 .

[3]  A A Žensykbaev BEST QUADRATURE FORMULA FOR SOME CLASSES OF PERIODIC DIFFERENTIABLE FUNCTIONS , 1977 .

[4]  A. A. Zhensykbaev,et al.  Monosplines of minimal norm and the best quadrature formulae , 1981 .

[5]  A. Pinkus Onn-widths of periodic functions , 1979 .

[6]  A. Pinkus,et al.  Best Approximation and Cyclic Variation Diminishing Kernels , 1997 .

[7]  K. Yu. Osipenko On n-WIDTHS, Optimal Quadrature Formulas, and Optimal Recovery of Functions Analytic in a Strip , 1995 .

[8]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[9]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[10]  ON THE BEST QUADRATURE FORMULA OF THE FORM $ \sum_{k=1}^np_kf(x_k)$ FOR SOME CLASSES OF DIFFERENTIABLE PERIODIC FUNCTIONS , 1974 .

[11]  Best quadrature formulae on Hardy-Sobolev classes , 2001 .

[12]  Charles A. Micchelli,et al.  Some Problems in the Approximation of Functions of Two Variables and n-Widths of Integral Operators , 1978 .

[13]  On the precise values of n-widths for classes defined by cyclic variation diminishing operators , 1997 .

[14]  Comparison Theorems of Kolmogorov Type for Classes Defined by Cyclic Variation Diminishing Operators and Their Application , 2008 .

[15]  Xuehua Li,et al.  Comparison theorems of Kolmogorov type and exact values of n-widths on Hardy-Sobolev classes , 2006, Math. Comput..

[16]  Exactn-widths of hardy-sobolev classes , 1997 .

[17]  Samuel Karlin,et al.  Interpolation properties of generalized perfect splines and the solutions of certain extremal problems. I , 1975 .

[18]  Wilhelm Forst Über die Breite von Klassen holomorpher periodischer Funktionen , 1977 .

[19]  Peter Mathé Asymptotically Optimal Weighted Numerical Integration , 1998, J. Complex..

[20]  F. Gensun,et al.  Optimal quadrature problem on Hardy--Sobolev classes , 2005 .