Modern Statistics for Spatial Point Processes *

Abstract.  We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs and Cox process models, diagnostic tools and model checking, Markov chain Monte Carlo algorithms, computational methods for likelihood‐based inference, and quick non‐likelihood approaches to inference.

[1]  Barnes Discussion of the Paper , 1961, Public health papers and reports.

[2]  Jerzy Neyman,et al.  On a New Class of "Contagious" Distributions, Applicable in Entomology and Bacteriology , 1939 .

[3]  M. Thomas A generalization of Poisson's binomial limit for use in ecology. , 1949, Biometrika.

[4]  J. Neyman,et al.  Statistical Approach to Problems of Cosmology , 1958 .

[5]  M. S. Bartlett,et al.  The spectral analysis of two-dimensional point processes , 1964 .

[6]  David Ruelle,et al.  Superstable interactions in classical statistical mechanics , 1970 .

[7]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[8]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[9]  F. Papangelou,et al.  The conditional intensity of general point processes and an application to line processes , 1974 .

[10]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[11]  F. Kelly,et al.  A note on Strauss's model for clustering , 1976 .

[12]  B. Ripley The Second-Order Analysis of Stationary Point Processes , 1976 .

[13]  Hans-Otto Georgii,et al.  Canonical and grand canonical Gibbs states for continuum systems , 1976 .

[14]  J. Grandell Doubly stochastic Poisson processes , 1976 .

[15]  B. Ripley,et al.  Markov Point Processes , 1977 .

[16]  J. F. C. Kingman,et al.  Remarks on the spatial distribution of a reproducing population , 1977 .

[17]  H. Zessin,et al.  Ergodic theorems for spatial processes , 1979 .

[18]  B. Ripley Simulating Spatial Patterns: Dependent Samples from a Multivariate Density , 1979 .

[19]  Hans Zessin,et al.  Integral and Differential Characterizations of the GIBBS Process , 1979 .

[20]  J. Besag,et al.  Point process limits of lattice processes , 1982, Journal of Applied Probability.

[21]  Valerie Isham,et al.  A Bivariate Spatial Point Pattern of Ants' Nests , 1983 .

[22]  Stephen P. Hubbell,et al.  Diversity of canopy trees in a neotropical forest and implications for conservation , 1983 .

[23]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[24]  A. Baddeley,et al.  A cautionary example on the use of second-order methods for analyzing point patterns , 1984 .

[25]  Thomas Fiksel,et al.  Estimation of Parametrized Pair Potentials of Marked and Non-marked Gibbsian Point Processes , 1984, J. Inf. Process. Cybern..

[26]  P. Diggle A Kernel Method for Smoothing Point Process Data , 1985 .

[27]  David J. Gates,et al.  Clustering estimates for spatial point distributions with unstable potentials , 1986 .

[28]  R. Takacs Estimator for the pair–potential of a gibbsian point process , 1986 .

[29]  Yosihiko Ogata,et al.  Likelihood analysis of spatial inhomogeneity for marked point patterns , 1988 .

[30]  B. Ripley Statistical inference for spatial processes , 1990 .

[31]  J. Lewins Contribution to the Discussion , 1989 .

[32]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[33]  J. L. Jensen,et al.  Pseudolikelihood for Exponential Family Models of Spatial Point Processes , 1991 .

[34]  L. Heinrich,et al.  Goodness-of-fit tests for the second moment funciton of a stationary multidimensional poisson process , 1991 .

[35]  Dietrich Stoyan,et al.  Marked Point Processes in Forest Statistics , 1992, Forest Science.

[36]  Mark Berman,et al.  Approximating Point Process Likelihoods with Glim , 1992 .

[37]  N. Hjort,et al.  Topics in Spatial Statistics , 1992 .

[38]  S. Mase,et al.  Uniform LAN condition of planar Gibbsian point processes and optimality of maximum likelihood estimators of soft-core potential functions , 1992 .

[39]  Andrew B. Lawson,et al.  GLIM and normalising constant models in spatial and directional data analysis , 1992 .

[40]  A. Baddeley,et al.  A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.

[41]  A. Baddeley,et al.  Area-interaction point processes , 1993 .

[42]  Andrew B. Lawson,et al.  A Deviance Residual for Heterogeneous Spatial Poisson Processes , 1993 .

[43]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[44]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[45]  Discussion of N.L. Hjort and H. Omre Topics in spatial statistics , 1994 .

[46]  H. Georgii Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction , 1994 .

[47]  N. Cressie,et al.  Asymptotic Properties of Estimators for the Parameters of Spatial Inhomogeneous Poisson Point Processes , 1994, Advances in Applied Probability.

[48]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[49]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[50]  Stephen L. Rathbun,et al.  Estimation of Poisson Intensity Using Partially Observed Concomitant Variables , 1996 .

[51]  Aila Särkkä,et al.  Parameter Estimation for Marked Gibbs Point Processes Through the Maximum Pseudo-likelihood Method , 1996 .

[52]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[53]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[54]  S. Hubbell,et al.  Changes in tree species abundance in a Neotropical forest: impact of climate change , 1996, Journal of Tropical Ecology.

[55]  J. Grandell Mixed Poisson Processes , 1997 .

[56]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[57]  R. Wolpert,et al.  Poisson/gamma random field models for spatial statistics , 1998 .

[58]  Richard Condit,et al.  Tropical Forest Census Plots , 1998, Environmental Intelligence Unit.

[59]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[60]  J. Heikkinen,et al.  Non‐parametric Bayesian Estimation of a Spatial Poisson Intensity , 1998 .

[61]  Ann Cowling,et al.  Spatial methods for line transect surveys , 1998 .

[62]  Adrian Baddeley,et al.  Practical maximum pseudolikelihood for spatial point patterns , 1998, Advances in Applied Probability.

[63]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[64]  Wilfrid S. Kendall,et al.  Perfect Simulation for the Area-Interaction Point Process , 1998 .

[65]  R. Nevanlinna Models for Point Processes Observed with Noise , 1998 .

[66]  D. Stoyan,et al.  Non-Homogeneous Gibbs Process Models for Forestry — A Case Study , 1998 .

[67]  Martin Kerscher,et al.  Statistical Analysis of Large-Scale Structure in the Universe , 1999 .

[68]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[69]  Olle Häggström,et al.  Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes , 1999 .

[70]  W. Kendall,et al.  Quermass-interaction processes: conditions for stability , 1999, Advances in Applied Probability.

[71]  Juha Heikkinen,et al.  Bayesian smoothing in the estimation of the pair potential function of Gibbs point processes , 1999 .

[72]  E. Bertin,et al.  Existence of ‘nearest-neighbour’ spatial Gibbs models , 1999, Advances in Applied Probability.

[73]  A. Brix Generalized Gamma measures and shot-noise Cox processes , 1999, Advances in Applied Probability.

[74]  Harri HöUgmander,et al.  Multitype Spatial Point Patterns with Hierarchical Interactions , 1999 .

[75]  N. Cressie,et al.  Directed Markov Point Processes as Limits of Partially Ordered Markov Models , 2000 .

[76]  A. Baddeley,et al.  Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns , 2000 .

[77]  N. G. Best,et al.  Spatial Poisson Regression for Health and Exposure Data Measured at Disparate Resolutions , 2000 .

[78]  N. Cressie,et al.  Hierarchical probability models and Bayesian analysis of mine locations , 2000, Advances in Applied Probability.

[79]  Dietrich Stoyan,et al.  On Variograms in Point Process Statistics, II: Models of Markings and Ecological Interpretation , 2000 .

[80]  A. Baddeley,et al.  Practical Maximum Pseudolikelihood for Spatial Point Patterns , 1998, Advances in Applied Probability.

[81]  Dietrich Stoyan,et al.  Improving Ratio Estimators of Second Order Point Process Characteristics , 2000 .

[82]  van Marie-Colette Lieshout,et al.  Markov Point Processes and Their Applications , 2000 .

[83]  Adrian Baddeley,et al.  A Third Order Point Process Characteristic , 1998, Advances in Applied Probability.

[84]  Rasmus Waagepetersen,et al.  Analysis of spatial data using generalized linear mixed models and Langevin-type Markov chain Monte Carlo , 2000 .

[85]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[86]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[87]  A. Baddeley Time-invariance estimating equations , 2000 .

[88]  Eva B. Vedel Jensen,et al.  Inhomogeneous Markov point processes by transformation , 2000 .

[89]  A B Lawson,et al.  Cluster modelling of disease incidence via RJMCMC methods: a comparative evaluation. Reversible jump Markov chain Monte Carlo. , 2000, Statistics in medicine.

[90]  Shigeru Mase,et al.  Marked Gibbs Processes and Asymptotic Normality of Maximum Pseudo‐Likelihood Estimators , 2000 .

[91]  Peter J. Diggle,et al.  A comparison between parametric and non-parametric approaches to the analysis of replicated spatial point patterns , 2000, Advances in Applied Probability.

[92]  Martin Schlather,et al.  On the second-order characteristics of marked point processes , 2001 .

[93]  P. Diggle,et al.  Spatiotemporal prediction for log‐Gaussian Cox processes , 2001 .

[94]  S. Mase,et al.  Packing Densities and Simulated Tempering for Hard Core Gibbs Point Processes , 2001 .

[95]  Ilkka Taskinen Cluster priors in the Bayesian modelling of fMRI data , 2001 .

[96]  Anders Brix,et al.  Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds , 2001 .

[97]  P. Blackwell,et al.  Bayesian Inference for a Random Tessellation Process , 2001, Biometrics.

[98]  Christian Lantuéjoul,et al.  Geostatistical Simulation: Models and Algorithms , 2001 .

[99]  Ian W. McKeague,et al.  Perfect Sampling for Point Process Cluster Modelling , 2002 .

[100]  Barry Boots,et al.  Modelling geographical systems : statistical and computational applications , 2002 .

[101]  K. K. Berthelsen,et al.  A primer on perfect simulation for spatial point processes , 2002 .

[102]  Kenichiro Shimatani Point processes for fine-scale spatial genetics and molecular ecology , 2002 .

[103]  Wilfrid S. Kendall,et al.  DEPARTMENT OF STATISTICS UNIVERSITY OF WARWICK Simulation of cluster point processes without edge effects , 2002 .

[104]  N. Hartvig,et al.  A Stochastic Geometry Model for Functional Magnetic Resonance Images , 2002 .

[105]  A. Brix,et al.  Spatio‐temporal Modelling of Weeds by Shot‐noise G Cox processes , 2002 .

[106]  J. Møller,et al.  Shot noise Cox processes , 2003, Advances in Applied Probability.

[107]  Jesper Møller,et al.  An Introduction to Simulation-Based Inference for Spatial Point Processes , 2003 .

[108]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[109]  Eva B. Vedel Jensen,et al.  Inhomogeneous spatial point processes by location-dependent scaling , 2003, Advances in Applied Probability.

[110]  Petros Dellaportas,et al.  An Introduction to MCMC , 2003 .

[111]  K. K. Berthelsen,et al.  Likelihood and Non‐parametric Bayesian MCMC Inference for Spatial Point Processes Based on Perfect Simulation and Path Sampling , 2003 .

[112]  Paul G. Blackwell,et al.  Bayesian analysis of deformed tessellation models , 2003, Advances in Applied Probability.

[113]  T. Shirai,et al.  Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .

[114]  T. Schweder,et al.  Abundance of minke whales (Balaenoptera acutorostrata) in the Northeast Atlantic: variability in time and space , 2004 .

[115]  Jorge Mateu Mahiques Spatial point process molling and its applications , 2004 .

[116]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[117]  David R. Anderson,et al.  Advanced distance sampling , 2004 .

[118]  Stephen T. Buckland,et al.  Spatial models for line transect sampling , 2004 .

[119]  Peter J. Diggle,et al.  Detecting dependence between marks and locations of marked point processes , 2004 .

[120]  ER MOLI.,et al.  ON THE RATE OF CONVERGENCE OF SPATIAL BIRTH-AND-DEATH PROCESSES , 2004 .

[121]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.

[122]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[123]  Eva B. Vedel Jensen,et al.  Statistical Inference for Transformation Inhomogeneous Point Processes , 2004 .

[124]  Jesper Møller,et al.  A Bayesian MCMC method for point process models with intractable normalising constants , 2004 .

[125]  Gary K Grunwald,et al.  Mixed models for the analysis of replicated spatial point patterns. , 2004, Biostatistics.

[126]  Laurent Massoulié,et al.  Power spectra of random spike fields and related processes , 2005, Advances in Applied Probability.

[127]  H. Georgii,et al.  Conditional Intensity and Gibbsianness of Determinantal Point Processes , 2004, math/0401402.

[128]  Jesper Møller,et al.  Generalised shot noise Cox processes , 2005, Advances in Applied Probability.

[129]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[130]  F. Schoenberg Consistent Parametric Estimation of the Intensity of a Spatial-temporal Point Process , 2005 .

[131]  A. Baddeley,et al.  Residual analysis for spatial point processes (with discussion) , 2005 .

[132]  Jesper Møller,et al.  The permanent process , 2005 .

[133]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[134]  Peter J. Diggle,et al.  Spatio-Temporal Point Processes: Methods and Applications , 2005 .

[135]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[136]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[137]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[138]  Tore Schweder,et al.  Likelihood-based inference for clustered line transect data , 2006 .

[139]  Michael Sherman Case Studies In Spatial Point Process Modeling , 2006 .

[140]  A. Tscheschel,et al.  Statistical reconstruction of random point patterns , 2006, Comput. Stat. Data Anal..

[141]  Adrian Baddeley,et al.  Modelling Spatial Point Patterns in R , 2006 .

[142]  F. Schoenberg On Non-simple Marked Point Processes , 2006 .

[143]  P. McCullagh,et al.  The permanental process , 2006 .

[144]  G. Andersson,et al.  Directions for future research. , 2006, The Journal of bone and joint surgery. American volume.

[145]  Ronald E Gangnon Impact of prior choice on local Bayes factors for cluster detection. , 2006, Statistics in medicine.

[146]  Andrew B. Lawson,et al.  Statistical Methods in Spatial Epidemiology: Lawson/Statistical Methods in Spatial Epidemiology , 2006 .

[147]  Yongtao Guan,et al.  Assessing Isotropy for Spatial Point Processes , 2006, Biometrics.

[148]  Jorge Mateu,et al.  Case Studies in Spatial Point Process Modeling , 2006 .

[149]  Jesper Møller,et al.  Bayesian Analysis of Markov Point Processes , 2006 .

[150]  Yongtao Guan,et al.  A Composite Likelihood Approach in Fitting Spatial Point Process Models , 2006 .

[151]  On Modelling of Refractory Castables by Marked Gibbs and Gibbsian-like Processes , 2006 .

[152]  R. Waagepetersen,et al.  Modern statistics for spatial point processes ∗ April 1 , 2006 , 2006 .

[153]  Eric Renshaw,et al.  The analysis of marked point patterns evolving through space and time , 2006, Comput. Stat. Data Anal..

[154]  R. Waagepetersen An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes , 2007, Biometrics.

[155]  Yongtao Guan,et al.  On least squares fitting for stationary spatial point processes , 2007 .

[156]  Jesper Møller,et al.  The pair correlation function of spatial Hawkes processes , 2007 .

[157]  Andrew B. Lawson,et al.  Line and point cluster models for spatial health data , 2007, Comput. Stat. Data Anal..

[158]  Eric Renshaw,et al.  Disentangling mark/point interaction in marked-point processes , 2007, Comput. Stat. Data Anal..

[159]  Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times , 2007 .

[160]  Ergodic averages via dominating processes , 2007 .

[161]  Eva Bjørn Vedel Jensen,et al.  Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks , 2007, Stat. Comput..

[162]  Adrian Baddeley Validation of Statistical Models for Spatial Point Patterns , 2007 .

[163]  Jesper Møller,et al.  Hierarchical spatial point process analysis for a plant community with high biodiversity , 2009, Environmental and Ecological Statistics.

[164]  Eva B. Vedel Jensen,et al.  Spatio-Temporal Modelling — with a View to Biological Growth , 2007 .

[165]  K. Mengersen,et al.  Ergodic averages for monotone functions using upper and lower dominating processes , 2007 .

[166]  Stephen L. Rathbun,et al.  Modelling the effects of partially observed covariates on Poisson process intensity , 2007 .

[167]  A. Pakes,et al.  Properties of residuals for spatial point processes , 2008 .

[168]  Jesper Møller,et al.  NON‐PARAMETRIC BAYESIAN INFERENCE FOR INHOMOGENEOUS MARKOV POINT PROCESSES , 2008 .

[169]  Growing and reproducing particles evolving through space and time , 2008 .

[170]  Yongtao Guan Variance estimation for statistics computed from inhomogeneous spatial point processes , 2008 .

[171]  Rasmus Waagepetersen,et al.  Estimating functions for inhomogeneous spatial point processes with incomplete covariate data , 2008 .

[172]  R. Waagepetersen,et al.  Two‐step estimation for inhomogeneous spatial point processes , 2009 .

[173]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[174]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .