Model-free Price Bounds under Dynamic Option Trading

In this paper we extend discrete time semi-static trading strategies by also allowing for dynamic trading in a finite amount of options, and we study the consequences for the model-independent super-replication prices of exotic derivatives. These include duality results as well as a precise characterization of pricing rules for the dynamically tradable options triggering an improvement of the price bounds for exotic derivatives in comparison with the conventional price bounds obtained through the martingale optimal transport approach.

[1]  Carole Bernard,et al.  Bounds on Multi-asset Derivatives via Neural Networks , 2019 .

[2]  Y. Dolinsky,et al.  Super‐replication in fully incomplete markets , 2015, 1508.05233.

[3]  M. Sion On general minimax theorems , 1958 .

[4]  Nizar Touzi,et al.  Complete Duality for Martingale Optimal Transport on the Line , 2015 .

[5]  Bruno Bouchard,et al.  Arbitrage and duality in nondominated discrete-time models , 2013, 1305.6008.

[6]  Pierre Henry-Labordere,et al.  (Martingale) Optimal Transport and Anomaly Detection with Neural Networks: A Primal-Dual Algorithm , 2019, SSRN Electronic Journal.

[7]  Tightening robust price bounds for exotic derivatives , 2019, Quantitative Finance.

[8]  AURÉLIEN ALFONSI,et al.  SAMPLING OF ONE-DIMENSIONAL PROBABILITY MEASURES IN THE CONVEX ORDER AND COMPUTATION OF ROBUST OPTION PRICE BOUNDS , 2019, International Journal of Theoretical and Applied Finance.

[9]  Patrick Cheridito,et al.  Duality Formulas for Robust Pricing and Hedging in Discrete Time , 2016, SIAM J. Financial Math..

[10]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[11]  C. Berge Topological Spaces: including a treatment of multi-valued functions , 2010 .

[12]  A. Skorohod,et al.  On the possibility of hedging options in the presence of transaction costs , 1997 .

[13]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .

[14]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[15]  David J. Prömel,et al.  Martingale optimal transport duality , 2019, Mathematische Annalen.

[16]  Pierre Henry-Labordere,et al.  Automated Option Pricing: Numerical Methods , 2011 .

[17]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[18]  Zhaoxu Hou,et al.  Robust pricing–hedging dualities in continuous time , 2018, Finance Stochastics.

[19]  J. Sester Robust Bounds for Derivative Prices in Markovian Models , 2018, International Journal of Theoretical and Applied Finance.

[20]  David J. Prömel,et al.  Duality for pathwise superhedging in continuous time , 2017, Finance and Stochastics.

[21]  Xiaolu Tan,et al.  The robust pricing–hedging duality for American options in discrete time financial markets , 2016, Mathematical Finance.

[22]  Ernst Eberlein,et al.  On the range of options prices , 1997, Finance Stochastics.

[23]  Patrick Cheridito,et al.  Robust expected utility maximization with medial limits , 2017, Journal of Mathematical Analysis and Applications.

[24]  A. Papapantoleon,et al.  Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation , 2020, Manag. Sci..

[25]  Sara Biagini,et al.  On the super replication price of unbounded claims , 2004, math/0503550.

[26]  Huyên Pham,et al.  A closed-form solution to the problem of super-replication under transaction costs , 1999, Finance Stochastics.

[27]  H. Kellerer,et al.  Markov-Komposition und eine Anwendung auf Martingale , 1972 .

[28]  Martingale transport with homogeneous stock movements , 2019, 1908.10242.

[29]  P. Carr,et al.  Option Pricing, Interest Rates and Risk Management: Towards a Theory of Volatility Trading , 2001 .

[30]  R. Frey,et al.  Bounds on European Option Prices under Stochastic Volatility , 1999 .

[31]  Michael Kupper,et al.  Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks , 2018, Applied Mathematics & Optimization.

[32]  M. Kupper,et al.  Pathwise superhedging on prediction sets , 2017, Finance and Stochastics.

[33]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[34]  Beatrice Acciaio,et al.  A MODEL‐FREE VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING AND THE SUPER‐REPLICATION THEOREM , 2013, 1301.5568.

[35]  Matteo Burzoni,et al.  Model-free superhedging duality , 2015, 1506.06608.

[36]  Erhan Bayraktar,et al.  On Arbitrage and Duality Under Model Uncertainty and Portfolio Constraints , 2014 .

[37]  Gaoyue Guo,et al.  Computational methods for martingale optimal transport problems , 2017, The Annals of Applied Probability.

[38]  B. David Martingales with specified marginals , 2012 .

[39]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[40]  Ariel Neufeld BUY-AND-HOLD PROPERTY FOR FULLY INCOMPLETE MARKETS WHEN SUPER-REPLICATING MARKOVIAN CLAIMS , 2017, International Journal of Theoretical and Applied Finance.

[41]  P. Mykland Financial options and statistical prediction intervals , 2003 .

[42]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.