Tetragonal YPO4 – a novel SRS-active crystal

High-order Raman-induced Stokes and anti-Stokes generation was observed in tetragonal YPO4 crystal. The discovered nonlinear-laser properties of this orthophosphate material significant increase the possibilities for its practical application. The SRS-promoting modes derive both from stretching vibrations of the phosphate ion, and from combinations of these modes.

[1]  Marvin J. Weber,et al.  Handbook of Laser Wavelengths , 1998 .

[2]  Lai,et al.  Stimulated Raman scattering in lithium formate monohydrate crystals at temperatures from 2 to 300 K. , 1990, Physical review. B, Condensed matter.

[3]  D. Rousseau,et al.  Normal mode determination in crystals , 1981 .

[4]  Hans Joachim Eichler,et al.  Monoclinic bismuth triborate BiB3O6 – a new efficient χ(2)+χ(3)-nonlinear crystal: multiple stimulated Raman scattering and self-sum-frequency lasing effects , 2002 .

[5]  G. Jellison,et al.  Spectroscopic refractive indices of metalorthophosphates with the zircon-type structure , 2000 .

[6]  S. A. Miller,et al.  Lattice Vibrations of Yttrium Vanadate , 1968 .

[7]  M. Kitaura,et al.  Effect of Zr4+ Addition on Photoluminescence Properties of YPO4:Mn2+ , 2007 .

[8]  Alexander A. Kaminskii,et al.  Laser crystals and ceramics: recent advances , 2007 .

[9]  I. Richman Raman Spectra of YPO 4 and YbPO 4 , 1966 .

[10]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[11]  H. Eichler,et al.  Observation of many-phonon stimulated Raman scattering and related cascaded nonlinear-laser effects in monoclinic LaBO2MoO4 single crystals , 2008 .

[12]  W. Gregor,et al.  Raman spectra of the rare earth orthophosphates , 1981 .

[13]  Hans Joachim Eichler,et al.  High-order stimulated Raman scattering in CVD single crystal diamond , 2007 .

[14]  V. Petrov,et al.  Laser operation of Yb3+ in the acentric RbTiOPO4 codoped with Nb5+. , 2007, Optics letters.

[15]  L. Boatner,et al.  Structural investigations of YPO4, ScPO4, and LuPO4 , 1982 .

[16]  L. Boatner Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime , 2002 .

[17]  M. F. Reid,et al.  High-resolution measurements of the vacuum ultraviolet energy levels of trivalent gadolinium by excited state excitation , 2005 .

[18]  H. Eichler,et al.  Wide-band Raman Stokes and anti-Stokes comb lasing in a BaF2 single crystal under picosecond pumping , 2008 .

[19]  Maxim E. Doroshenko,et al.  Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping , 2005 .

[20]  Yaochun Shen Principles of nonlinear optics , 1984 .

[21]  P. Dorenbos,et al.  LuPO4:Nd and YPO4:Nd—new promising VUV scintillation materials , 2002 .

[22]  E. Cavalli,et al.  Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy3 , 2002 .

[23]  R. Mahiou,et al.  Quenching of Lanthanide Emission by Intervalence Charge Transfer in Crystals Containing Closed Shell Transition Metal Ions , 2007 .

[24]  James C. Barnes,et al.  Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers , 2001 .

[25]  R. Mahiou,et al.  Excited state dynamics of Pr3+ in YVO4 crystals , 2004 .

[26]  William F. Krupke,et al.  A diode pumped solid state laser driver for inertial fusion energy , 1998 .

[27]  M. Weber Handbook of Lasers , 2019 .

[28]  William F. Krupke,et al.  1.047-/spl mu/m Yb:Sr/sub 5/(PO/sub 4/)/sub 3/F energy storage optical amplifier , 1995 .

[29]  R. Feigelson Synthesis and Single‐Crystal Growth of Rare‐Earth Orthophosphates , 1964 .

[30]  K. Ueda,et al.  Steady-state picosecond stimulated Raman scattering in two host-crystals for Ln3+ and Ln2+ lasants , 2006 .

[31]  Hans Joachim Eichler,et al.  Stimulated Raman scattering and cascaded nonlinear laser (χ(3) ↔ χ(2)) effects in tetragonal non-centrosymmetric Li2B4O7 single crystals , 2006 .

[32]  S. Girard,et al.  Experimental and theoretical investigation of the 4fn↔4fn-15d transitions in YPO4:Pr3+and YPO4:Pr3+, Ce3+ , 2001 .