Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory

In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In this paper we summarise some of the major achievements, rigorously proven also in several recent peer-reviewed papers, of this innovative formulation of quantum particle physics.

[1]  D. Dolce Introduction to the Quantum Theory of Elementary Cycles , 2017, 1707.00677.

[2]  Marcel Abendroth,et al.  Quantum Field Theory And Critical Phenomena , 2016 .

[3]  I. Licata,et al.  Timeless Approach to Quantum Jumps , 2015 .

[4]  M. B. van der Mark,et al.  Light is Heavy , 2015, 1508.06478.

[5]  A. Perali,et al.  On the Compton clock and the undulatory nature of particle mass in graphene systems , 2014, 1403.7037.

[6]  Steven Weinberg,et al.  Quantum Mechanics Without State Vectors , 2014, 1405.3483.

[7]  G. Hooft The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum Nature of our Universe, Compulsory or Impossible? , 2014 .

[8]  Helen S. Margolis,et al.  Timekeepers of the future , 2014, Nature Physics.

[9]  A. Perali,et al.  The role of quantum recurrence in superconductivity, carbon nanotubes and related gauge symmetry breaking , 2013, 1307.5062.

[10]  D. Dolce Elementary cycles of time , 2013, 1306.0579.

[11]  D. Dolce Elementary spacetime cycles , 2013, 1305.2802.

[12]  P. F. Córdoba,et al.  Emergent quantum mechanics as a thermal ensemble , 2013, 1304.6295.

[13]  D. Dolce Intrinsic periodicity: the forgotten lesson of quantum mechanics , 2013, 1304.4167.

[14]  Shau-Yu Lan,et al.  A Clock Directly Linking Time to a Particle's Mass , 2013, Science.

[15]  A. Zeilinger,et al.  A snapshot of foundational attitudes toward quantum mechanics , 2013, 1301.1069.

[16]  D. Dolce AdS/CFT as classical to quantum correspondence in a Virtual Extra Dimension , 2013, 1309.2646.

[17]  D. Dolce Clockwork Quantum Universe , 2012, 1205.1788.

[18]  Frank Wilczek,et al.  Quantum time crystals. , 2012, Physical review letters.

[19]  D. Dolce On the intrinsically cyclic nature of space-time in elementary particles , 2012, 1206.1140.

[20]  D. Dolce Gauge interaction as periodicity modulation , 2011, 1110.0315.

[21]  D. Dolce Classical geometry to quantum behavior correspondence in a virtual extra dimension , 2011, 1110.0316.

[22]  D. Dolce de Broglie Deterministic Dice and emerging Relativistic Quantum Mechanics , 2011, 1111.3319.

[23]  E. A. Solov'ev,et al.  Classical approach in atomic physics , 2010, 1003.4387.

[24]  D. Dolce Deterministic Quantization by Dynamical Boundary Conditions , 2010, 1006.5648.

[25]  astronomy Physics Principe de Relativité , 2010 .

[26]  D. Dolce Quantum Mechanics from Periodic Dynamics: the bosonic case , 2010, 1001.2718.

[27]  Gerard 't Hooft,et al.  Entangled quantum states in a local deterministic theory , 2009, 0908.3408.

[28]  D. Dolce Compact Time and Determinism for Bosons: Foundations , 2009, 0903.3680.

[29]  D. Dolce Compact Time and Determinism for Bosons , 2009 .

[30]  Carlo Rovelli,et al.  “Forget time” , 2009, 0903.3832.

[31]  N. Cue,et al.  A Search for the de Broglie Particle Internal Clock by Means of Electron Channeling , 2008 .

[32]  H. Nikolić Probability in Relativistic Bohmian Mechanics of Particles and Strings , 2008, 0804.4564.

[33]  Gerard 't Hooft,et al.  Emergent quantum mechanics and emergent symmetries , 2007, 0707.4568.

[34]  S. Curtis,et al.  Holographic approach to a minimal Higgsless model , 2007, 0705.2510.

[35]  A. Einstein Bietet die Feldtheorie Möglichkeiten für die Lösung des Quantenproblems , 2006 .

[36]  G. Hooft The mathematical basis for deterministic quantum mechanics , 2006, quant-ph/0604008.

[37]  H. Nielsen,et al.  Intrinsic Periodicity of Time and Nonmaximal Entropy of Universe , 2006, hep-th/0601021.

[38]  M. Dasgupta,et al.  An Introduction to Quantum Field Theory , 2007 .

[39]  F. Cooperstock,et al.  Closed Timelike Curves and Time Travel: Dispelling the Myth , 2005 .

[40]  H. Elze A Quantum field theory as emergent description of constrained supersymmetric classical dynamics , 2005, hep-th/0508095.

[41]  R. Jaffe Casimir effect and the quantum vacuum , 2005, hep-th/0503158.

[42]  R. Penrose,et al.  A theory of everything? , 2005, Nature.

[43]  G. Hooft Quantum Mechanics and Determinism , 2001, hep-th/0105105.

[44]  G. Hooft How Does God Play Dice? (Pre-)Determinism at the Planck Scale , 2001, hep-th/0104219.

[45]  G. Hooft Determinism in Free Bosons , 2001, hep-th/0104080.

[46]  L. Randall,et al.  Holography and phenomenology , 2000, hep-th/0012148.

[47]  Gerard 't Hooft HOW DOES GOD PLAY DICE ? (PRE-)DETERMINISM AT THE PLANCK SCALE , 2001 .

[48]  J. Zinn-Justin Quantum Field Theory at Finite Temperature: An Introduction , 2000, hep-ph/0005272.

[49]  Gerard 't Hooft Trans-Planckian particles and the quantization of time , 1999 .

[50]  R. Ferber A missing link: What is behind de Broglie's “periodic phenomenon”? , 1996 .

[51]  S. Weinberg The Quantum Theory of Fields, Vol. 2: Modern Applications , 1996 .

[52]  C. R. Stephens,et al.  Black hole evaporation without information loss , 1993, gr-qc/9310006.

[53]  David Hestenes,et al.  The zitterbewegung interpretation of quantum mechanics , 1990 .

[54]  J. York Boundary terms in the action principles of general relativity , 1986 .

[55]  Abraham Pais,et al.  ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .

[56]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[57]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[58]  R. Feynman The principle of least action in quantum mechanics , 1942 .