A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation

Abstract We present a new family of mimetic finite difference schemes for solving elliptic partial differential equations in the primal form on unstructured polyhedral meshes. These mimetic discretizations are built to satisfy local consistency and stability conditions. The consistency condition is an exactness property, i.e., the mimetic schemes are exact when the solution is a polynomial of an assigned degree. The stability condition ensures the well-posedness of the method. The degrees of freedom are the solution moments on mesh faces and inside mesh cells. Higher order schemes are built using higher order moments. The developed schemes are verified numerically on diffusion problems with constant and spatially variable (possibly, discontinuous) tensorial coefficients.

[1]  Artur Palha,et al.  Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms , 2013, J. Comput. Phys..

[2]  J. M. Hyman,et al.  Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .

[3]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[4]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[5]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[6]  J. David Moulton,et al.  A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..

[7]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[8]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[9]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[10]  Glaucio H. Paulino,et al.  Honeycomb Wachspress finite elements for structural topology optimization , 2009 .

[11]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.

[12]  Gianmarco Manzini,et al.  Mimetic scalar products of discrete differential forms , 2014, J. Comput. Phys..

[13]  Gianmarco Manzini,et al.  Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .

[14]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[15]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[16]  Gianmarco Manzini,et al.  Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..

[17]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[18]  Paola F. Antonietti,et al.  Mimetic finite differences for nonlinear and control problems , 2014 .

[19]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[20]  Gianmarco Manzini,et al.  Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..

[21]  Gianmarco Manzini,et al.  Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .

[22]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[23]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[24]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[25]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[26]  Jerome Droniou,et al.  FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.

[27]  L. B. D. Veiga,et al.  A Mimetic discretization method for linear elasticity , 2010 .

[28]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[29]  Gianmarco Manzini,et al.  M-Adaptation in the mimetic finite difference method , 2014 .

[30]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[31]  Gianmarco Manzini The Mimetic Finite Difference Method , 2013 .

[32]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[33]  Glaucio H. Paulino,et al.  Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection , 2013, 1307.4423.

[34]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[35]  M. Shashkov,et al.  A discrete operator calculus for finite difference approximations , 2000 .

[36]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[37]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[38]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[39]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .