Domain Decomposition Methods for Partial Differential Equations

Domain decomposition methods are iterative methods for the solution of linear or nonlinear systems that use explicit information about the geometry, discretization, and/or partial differential equations that underlie the discrete systems. Considerable research in domain decomposition methods for partial differential equations has been carried out in the past dozen years. Recently, these techniques have begun to be applied to “real-world” engineering problems. This chapter summarizes basic ideas of domain decomposition methods. Though no particular applications are discussed, references are furnished to several recent uses of domain decomposition.

[1]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .

[2]  Tony F. Chan,et al.  Domain decomposition preconditioners for convection diffusion problems , 1994 .

[3]  Leslie B. Hart,et al.  Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Computational analysis , 1987 .

[4]  Morten D. Skogen,et al.  Domain Decomposition Algorithms Of Schwarz Type, Designed For Massively Parallel Computers , 1992 .

[5]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[6]  Olof B. Widlund,et al.  On the optimality of an additive iterative refinement method , 1989 .

[7]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[8]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[9]  S. McCormick,et al.  The fast adaptive composite grid (FAC) method for elliptic equation , 1986 .

[10]  Patrick Le Tallec,et al.  Coupling Boltzmann and Euler equations without overlapping , 1992 .

[11]  R. Glowinski,et al.  Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .

[12]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[13]  J. S. Przemieniecki Matrix Structural Analysis of Substructures , 1963 .

[14]  William Gropp,et al.  Newton-Krylov-Schwarz Methods in CFD , 1994 .

[15]  J. Mandel Balancing domain decomposition , 1993 .

[16]  Xiao-Chuan Cai The Use of Pointwise Interpolation in Domain Decomposition Methods with Nonnested Meshes , 1995, SIAM J. Sci. Comput..

[17]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[18]  William Gropp,et al.  Simplified Linear Equation Solvers users manual , 1993 .

[19]  H. Schwarz Gesammelte mathematische Abhandlungen , 1970 .

[20]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[21]  Stephen F. McCormick,et al.  Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.

[22]  S. McCormick,et al.  Fast Adaptive Composite Grid (FAC) Methods: Theory for the Variational Case , 1984 .

[23]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[24]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[25]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[26]  Xuejun Zhang,et al.  Multilevel Schwarz Methods for the Biharmonic Dirichlet Problem , 1994, SIAM J. Sci. Comput..

[27]  Yousef Saad,et al.  Overlapping Domain Decomposition Algorithms for General Sparse Matrices , 1996, Numer. Linear Algebra Appl..

[28]  David E Keyes,et al.  Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1992 .

[29]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[30]  Richard E. Ewing,et al.  Domain Decomposition Methods for Problems with Partial Refinement , 1992, SIAM J. Sci. Comput..

[31]  Richard E. Ewing,et al.  A preconditioning technique for the efficient solution of problems with local grid refinement , 1988 .

[32]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[33]  D. Keyes,et al.  NEWTON-KRYLOV-SCHWARZ: AN IMPLICIT SOLVER FOR CFD , 1995 .

[34]  Jun Zou,et al.  Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids , 1996 .