Multilevel Monte Carlo Path Simulation

We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and a Euler discretisation, the computational cost to achieve an accuracy of O(e) is reduced from O(e-3) to O(e-2 (log e)2). The analysis is supported by numerical results showing significant computational savings.

[1]  Arpit A. Almal,et al.  Lifting the Curse of Dimensionality , 2007 .

[2]  P. Glynn,et al.  Efficient Monte Carlo Simulation of Security Prices , 1995 .

[3]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[4]  Frances Y. Kuo,et al.  Lifting the Curse of Dimensionality , 2005 .

[5]  Christian Kahl,et al.  Fast strong approximation Monte Carlo schemes for stochastic volatility models , 2006 .

[6]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[7]  Christian Kahl,et al.  Not-so-complex logarithms in the Heston model , 2006 .

[8]  Mario Rometsch,et al.  Quasi-Monte Carlo Methods in Finance , 2009 .

[9]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[10]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[11]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[12]  I. M. Soboĺ Quasi-Monte Carlo methods , 1990 .

[13]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[14]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[15]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[16]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[17]  A. Kebaier,et al.  Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing , 2005, math/0602529.

[18]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[19]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[20]  Michael B. Giles,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[21]  Burton Simon,et al.  IMPROVING SIMULATION EFFICIENCY WITH QUASI CONTROL VARIATES , 2002 .

[22]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[23]  Jessica G. Gaines,et al.  Random Generation of Stochastic Area Integrals , 1994, SIAM J. Appl. Math..

[24]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[25]  P. Glasserman,et al.  A Continuity Correction for Discrete Barrier Options , 1997 .