Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations

This paper focuses on unconditionally optimal error analysis of an uncoupled and linearized Crank--Nicolson Galerkin finite element method for the time-dependent nonlinear thermistor equations in $d$-dimensional space, $d=2,3$. In our analysis, we split the error function into two parts, one from the spatial discretization and one from the temporal discretization, by introducing a corresponding time-discrete (elliptic) system. We present a rigorous analysis for the regularity of the solution of the time-discrete system and error estimates of the time discretization. With these estimates and the proved regularity, optimal error estimates of the fully discrete Crank--Nicolson Galerkin method are obtained unconditionally. Numerical results confirm our analysis and show the efficiency of the method.

[1]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[2]  Yinnian He,et al.  Fully discrete finite element method for the viscoelastic fluidmotion equations , 2010 .

[3]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[4]  Weiwei Sun,et al.  Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation , 2001, SIAM J. Numer. Anal..

[5]  Yunqing Huang,et al.  An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations , 1998 .

[6]  Giovanni Cimatti,et al.  Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor , 1992 .

[7]  BIYUE LIU,et al.  The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[8]  Heping Ma,et al.  Orthogonal spline collocation methods for the stream function‐vorticity formulation of the Navier–Stokes equations , 2008 .

[9]  W. Allegretto,et al.  Existence of solutions for the time-dependent thermistor equations , 1992 .

[10]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[11]  Buyang Li Mathematical modelling, analysis and computation of some complex and nonlinear flow problems , 2012 .

[12]  Richard E. Ewing,et al.  Galerkin Methods for Miscible Displacement Problems in Porous Media , 1979 .

[13]  Heping Ma,et al.  Optimal Error Estimates of the Chebyshev-Legendre Spectral Method for Solving the Generalized Burgers Equation , 2003, SIAM J. Numer. Anal..

[14]  D. R. Westbrook,et al.  Numerical solutions of the thermistor equations , 1997 .

[15]  Heping Ma,et al.  Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations , 2009 .

[16]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[17]  Weiwei Sun,et al.  Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials , 2012, Numerische Mathematik.

[18]  Charles M. Elliott,et al.  A finite element model for the time-dependent Joule heating problem , 1995 .

[19]  Walter Allegretto,et al.  A POSTERIORI ERROR ANALYSIS FOR FEM OF THERMISTOR PROBLEMS , 2006 .

[20]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[21]  R. Bruce Kellogg,et al.  The analysis of a finite element method for the Navier–Stokes equations with compressibility , 2000, Numerische Mathematik.

[22]  Hong Wang,et al.  An Optimal-Order Error Estimate for a Family of ELLAM-MFEM Approximations to Porous Medium Flow , 2008, SIAM J. Numer. Anal..

[23]  Graeme Fairweather,et al.  Three level Galerkin methods for parabolic equations , 1974 .

[24]  Stig Larsson,et al.  Linearly Implicit Finite Element Methods for the Time-Dependent Joule Heating Problem , 2005 .

[25]  Yinnian He,et al.  The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..

[26]  C. Simader,et al.  On Dirichlet's Boundary Value Problem , 1972 .

[27]  Guangwei Yuan,et al.  Regularity of solutions of the thermistor problem , 1994 .

[28]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[29]  Walter Allegretto,et al.  Existence and long time behaviour of solutions to obstacle thermistor equations , 2002 .

[30]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[31]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[32]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[33]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[34]  Guangwei Yuan,et al.  Existence and uniqueness of the C a solution for the thermistor problem with mixed boundary value , 1994 .

[35]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[36]  Sun-Sig Byun,et al.  Elliptic equations with measurable coefficients in Reifenberg domains , 2010 .

[37]  Heping Ma,et al.  Error analysis for solving the Korteweg‐de Vries equation by a Legendre pseudo‐spectral method , 2000 .

[38]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[39]  Mark M. Meerschaert,et al.  Mathematical Modeling , 2014, Encyclopedia of Social Network Analysis and Mining.

[40]  Y. Lin,et al.  Non-classicalH1 projection and Galerkin methods for non-linear parabolic integro-differential equations , 1988 .