OLAP-enabled web search of complex objects

Inspired by the actual trend of empowering traditional Web search methodologies by means of novel computational paradigms, in this paper we propose and experimentally assess WebClustCube, a novel system that allows OLAP-enabled Web search of complex objects, thus adding new value to the potentialities of current Web search paradigms. In particular, WebClustCube supports the building and the interactive manipulation of OLAP-enabled Web views over complex objects extracted from distributed databases. The data management, OLAP-like support of WebClustCube is provided by ClustCube, a state-of-the-art framework for coupling OLAP methodologies and clustering algorithms with the goal of analyzing and mining of complex database objects. A case study that clearly shows the potentialities of WebClustCube in the context of next-generation Web search environments is provided. We complement of analytical contribution by means of an experimental assessment and analysis of WebClustCube according to several metric perspectives.

[1]  Daniel Tunkelang,et al.  Faceted Search , 2009, Synthesis Lectures on Information Concepts, Retrieval, and Services.

[2]  Sanghoon Lee,et al.  To Enhance Web Search Based on Topic Sensitive_Social Relationship Ranking Algorithm in Social Networks , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[3]  Rick Cattell,et al.  Scalable SQL and NoSQL data stores , 2011, SGMD.

[4]  Laks V. S. Lakshmanan,et al.  Quotient Cube: How to Summarize the Semantics of a Data Cube , 2002, VLDB.

[5]  Verena Kantere,et al.  A Workflow Model for Adaptive Analytics on Big Data , 2015, 2015 IEEE International Congress on Big Data.

[6]  Guandong Xu,et al.  Towards a Framework for Supporting Web Search of Complex Objects via Multidimensional Paradigms , 2014, 2014 14th International Conference on Computational Science and Its Applications.

[7]  Michelangelo Ceci,et al.  Effectively and efficiently supporting roll-up and drill-down OLAP operations over continuous dimensions via hierarchical clustering , 2013, Journal of Intelligent Information Systems.

[8]  Mario Cannataro,et al.  Modeling Adaptive Hypermedia with an Object-Oriented Approach and XML , 2002, WebDyn@WWW.

[9]  Alfredo Cuzzocrea,et al.  Enabling OLAP in mobile environments via intelligent data cube compression techniques , 2008, Journal of Intelligent Information Systems.

[10]  Jiawei Han,et al.  Computing Iceberg Cubes by Top-Down and Bottom-Up Integration: The StarCubing Approach , 2007, IEEE Transactions on Knowledge and Data Engineering.

[11]  Mimmo Parente,et al.  Towards OLAP Analysis of Multidimensional Tweet Streams , 2015, DOLAP.

[12]  Alfredo Cuzzocrea,et al.  Analytical Synopses for Approximate Query Answering in OLAP Environments , 2004, DEXA.

[13]  Jeffrey D. Ullman,et al.  Implementing data cubes efficiently , 1996, SIGMOD '96.

[14]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[15]  Djoerd Hiemstra,et al.  Snippet-Based Relevance Predictions for Federated Web Search , 2013, ECIR.

[16]  Wo-Shun Luk,et al.  Data visualization on web-based OLAP , 2011, DOLAP '11.

[17]  Alfredo Cuzzocrea,et al.  Combining multidimensional user models and knowledge representation and management techniques for making web services knowledge-aware , 2006, Web Intell. Agent Syst..

[18]  Amélie Marian,et al.  One size does not fit all: multi-granularity search of web forums , 2013, CIKM.

[19]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[20]  Jiebo Luo,et al.  Visual cube and on-line analytical processing of images , 2010, CIKM '10.

[21]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[22]  Michael W. Berry,et al.  Survey of Text Mining , 2003, Springer New York.

[23]  Lu Liu,et al.  Faceted Search in Business Intelligence on the Cloud , 2013, 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.

[24]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[25]  Laks V. S. Lakshmanan,et al.  Efficacious Data Cube Exploration by Semantic Summarization and Compression , 2003, VLDB.

[26]  Jeffrey D. Ullman,et al.  Big data: a research agenda , 2013, IDEAS '13.

[27]  Tian Zhang,et al.  BIRCH: A New Data Clustering Algorithm and Its Applications , 1997, Data Mining and Knowledge Discovery.

[28]  Lotfi Lakhal,et al.  Extracting semantics in OLAP databases using emerging cubes , 2011, Inf. Sci..

[29]  Nick Roussopoulos,et al.  DynaMat: a dynamic view management system for data warehouses , 1999, SIGMOD '99.

[30]  Alfredo Cuzzocrea,et al.  CAMS: OLAPing Multidimensional Data Streams Efficiently , 2009, DaWaK.

[31]  Alfredo Cuzzocrea,et al.  Approximate OLAP Query Processing over Uncertain and Imprecise Multidimensional Data Streams , 2013, DEXA.

[32]  Jia-Lang Seng,et al.  Data warehouse enhancement: A semantic cube model approach , 2007, Inf. Sci..

[33]  Jiawei Han,et al.  Topic Cube: Topic Modeling for OLAP on Multidimensional Text Databases , 2009, SDM.

[34]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[35]  Benjamin M. Good,et al.  Tag clouds for summarizing web search results , 2007, WWW '07.

[36]  Georgia Koutrika,et al.  OLAP Cubes for Social Searches: Standing on the Shoulders of Giants? , 2008, WebDB.

[37]  Alfredo Cuzzocrea,et al.  Semantics-Aware Advanced OLAP Visualization of Multidimensional Data Cubes , 2007, Int. J. Data Warehous. Min..

[38]  Alfredo Cuzzocrea,et al.  Discovering Frequent Patterns from Uncertain Data Streams with Time-Fading and Landmark Models , 2013, Trans. Large Scale Data Knowl. Centered Syst..

[39]  Alfredo Cuzzocrea,et al.  ClustCube: an OLAP-based framework for clustering and mining complex database objects , 2011, SAC '11.

[40]  Hans-Peter Kriegel,et al.  The pyramid-technique: towards breaking the curse of dimensionality , 1998, SIGMOD '98.

[41]  Mark Sifer Exploring website log data with coordinated dimension hierarchies and network pivots , 2006, Int. J. Comput. Sci. Eng..

[42]  Jiawei Han,et al.  CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..

[43]  Heng Ji,et al.  EventCube: multi-dimensional search and mining of structured and text data , 2013, KDD.

[44]  Alfredo Cuzzocrea Retrieving Accurate Estimates to OLAP Queries over Uncertain and Imprecise Multidimensional Data Streams , 2011, SSDBM.

[45]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[46]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[47]  Nafees Ur Rehman,et al.  OLAPing social media: The case of Twitter , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[48]  Gang Wang,et al.  Exploiting query term correlation for list caching in web search engines , 2013, CIKM.

[49]  Bo Zhao,et al.  Text Cube: Computing IR Measures for Multidimensional Text Database Analysis , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[50]  Alfredo Cuzzocrea,et al.  Fragmenting very large XML data warehouses via K-means clustering algorithm , 2009, Int. J. Bus. Intell. Data Min..

[51]  Alfredo Cuzzocrea,et al.  A Hierarchy-Driven Compression Technique for Advanced OLAP Visualization of Multidimensional Data Cubes , 2006, DaWaK.