Computational geometry and computer graphics

The interaction between computer graphics and computational geometry is explored through two scenarios. Spatial subdivisions studied from the viewpoint of computational geometry are shown to have found application in computer graphics. Hidden surface removal problems of computer graphics have led to sweep-line and area subdivision algorithms in computational geometry. Two promising research area with practical applications, precise computation and polyhedral decomposition, are examined. >

[1]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[2]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[3]  H. Hadwiger Eulers Charakteristik und kombinatorische Geometrie. , 1955 .

[4]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.

[5]  James Arvo,et al.  Fast ray tracing by ray classification , 1987, SIGGRAPH '87.

[6]  Michael Ian Shamos,et al.  Geometric intersection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[7]  J. Painter,et al.  Antialiased ray tracing by adaptive progressive refinement , 1989, SIGGRAPH.

[8]  Victor J. Milenkovic,et al.  Numerical stability of algorithms for line arrangements , 1991, SCG '91.

[9]  Michael Ian Shamos,et al.  Geometric complexity , 1975, STOC.

[10]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[11]  John Edward Warnock,et al.  A hidden surface algorithm for computer generated halftone pictures , 1969 .

[12]  David P. Dobkin,et al.  Space Searching for Intersecting Objects , 1987, J. Algorithms.

[13]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[14]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[15]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[16]  Pascal Lienhardt,et al.  Subdivisions of n-dimensional spaces and n-dimensional generalized maps , 1989, SCG '89.

[17]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[18]  Michael Jay Laszlo A data structure for manipulating three-dimensional subdivisions , 1987 .

[19]  Gary S. Watkins,et al.  A real time visible surface algorithm , 1970 .

[20]  Henry Neeman A decomposition algorithm for visualizing irregular grids , 1990, SIGGRAPH 1990.

[21]  David P. Dobkin,et al.  Applied Computational Geometry: Towards Robust Solutions of Basic Problems , 1990, J. Comput. Syst. Sci..

[22]  Noga Alon,et al.  Partitioning and geometric embedding of range spaces of finite Vapnik-Chervonenkis dimension , 1987, SCG '87.

[23]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[24]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[25]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[26]  Robert L. Grossman,et al.  Visibility with a moving point of view , 1994, SODA '90.

[27]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[28]  Timothy Baker,et al.  Unstructured meshes and surface fidelity for complex shapes , 1991 .

[29]  Leonidas J. Guibas,et al.  An efficient algorithm for finding the CSG representation of a simple polygon , 1988, Algorithmica.

[30]  Richard J. Lipton,et al.  Multidimensional Searching Problems , 1976, SIAM J. Comput..

[31]  Tamal K. Dey,et al.  Triangulation and CSG representation of polyhedra with arbitrary genus , 1991, SCG '91.

[32]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[33]  The geometric calculus of variations and modelling natural phenomena , 1993 .

[34]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[35]  R. Lipton,et al.  On some generalizations of binary search , 1974, STOC '74.

[36]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[37]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[38]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[39]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[40]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[41]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[42]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[43]  David Eppstein,et al.  Polynomial-size nonobtuse triangulation of polygons , 1991, SCG '91.

[44]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[45]  C. Barber Computational geometry with imprecise data and arithmetic , 1992 .