S-estimation of nonlinear regression models with dependent and heterogeneous observations

In time series regression, where a single outlier can appear in the regressor vector multiple times due to the presence of lagged variables, resistance of an estimator to outliers is of serious concern. We show that the high resistance of S-estimators in cross section regression carries over to time series. We investigate the large sample properties of S-estimators in nonlinear regression with dependent, heterogeneous data and conduct Monte Carlo simulations to examine the performance of S-estimators and assess the accuracy of our asymptotic approximations. Finally, we offer a simple empirical example applying S-estimators to a financial time series.

[1]  P. Bickel,et al.  Descriptive Statistics for Nonparametric Models. III. Dispersion , 1976 .

[2]  Jeffrey M. Wooldridge,et al.  Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes , 1988, Econometric Theory.

[3]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[4]  P. L. Davies,et al.  The asymptotics of S-estimators in the linear regression model , 1990 .

[5]  Sadayuki Sato,et al.  On the Rising Prices in the Post-war Capitalist Economy , 1991 .

[6]  Samuel Kotz,et al.  Encyclopedia of Statistical Sciences, Update Volume 1 , 1997 .

[7]  Xuming He A local breakdown property of robust tests in linear regression , 1991 .

[8]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[9]  Charles F. Manski,et al.  Analog estimation methods in econometrics , 1988 .

[10]  V. Yohai,et al.  Bias- and efficiency-robustness of general M-estimators for regression with random carriers , 1979 .

[11]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[12]  Theo Gasser,et al.  Smoothing Techniques for Curve Estimation , 1979 .

[13]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[14]  A. C. Thompson,et al.  Theory of correspondences : including applications to mathematical economics , 1984 .

[15]  F. Hampel Contributions to the theory of robust estimation , 1968 .

[16]  J. Wooldridge Asymptotic properties of econometric estimators , 1986 .

[17]  D. Ruppert,et al.  Breakdown in Nonlinear Regression , 1992 .

[18]  Alfio Marazzi Algorithms and programs for robust linear regression , 1991 .

[19]  Donald W. K. Andrews,et al.  An empirical process central limit theorem for dependent non-identically distributed random variables , 1989 .

[20]  L. Ingber Very fast simulated re-annealing , 1989 .

[21]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[22]  Shinichi Sakata,et al.  HIGH BREAKDOWN POINT CONDITIONAL DISPERSION ESTIMATION WITH APPLICATION TO S&P 500 DAILY RETURNS VOLATILITY , 1998 .

[23]  D. Andrews Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables , 1988, Econometric Theory.

[24]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[25]  V. Yohai,et al.  High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .

[26]  H. White Using Least Squares to Approximate Unknown Regression Functions , 1980 .

[27]  Maxwell B. Stinchcombe,et al.  Some Measurability Results for Extrema of Random Functions Over Random Sets , 1992 .

[28]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[29]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[30]  L. Ingber Adaptive Simulated Annealing (ASA) , 1993 .

[31]  W. Härdle,et al.  Robust and Nonlinear Time Series Analysis , 1984 .

[32]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[33]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[34]  Shinichi Sakata,et al.  An Alternative Definition of Finite-Sample Breakdown Point with Applications to Regression Model Estimators , 1995 .

[35]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[36]  P. Bickel,et al.  DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS IV. SPREAD , 1979 .

[37]  Exactly what is being modelled by the systematic component in a heteroscedastic linear regression , 1992 .

[38]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[39]  R. Rao Relations between Weak and Uniform Convergence of Measures with Applications , 1962 .

[40]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.