Analaysis and improvement of genetic algorithms using concepts from information theory

Evolutionary algorithms are based on the principles of biological evolution (Bremermann et al., 1966; Fraser, 1957; Box, 1957). Genetic algorithms are a class of evolutionary algorithm applicable to optimisation of a wide range of problems because they do not assume that the problem to be optimised is differentiable or convex. Potential solutions to a problem are encoded by allele sequences (genes) on an artificial genome in a manner analogous to biological DNA. Populations of these artificial genomes are then tested and bred together, combining artificial genetic material by the operation of crossover and mutation of genes, so that encoded solutions which more completely optimise the problem flourish and weaker solutions die out. Genetic algorithms are applied to a very broad range of problems in a variety of industries including financial modeling, manufacturing, data mining, engineering, design and science. Some examples are: • Traveling Salesman Problems such as vehicle routing, • Scheduling Problems such as Multiprocessor scheduling, and • Packing problems such as Shipping Container Operations. However, relative to the total volume of papers on genetic algorithms, few have focused on the theoretical foundations and identification of techniques to build effective genetic algorithms. Recent research has tended to focus on industry applications, rather than design techniques or parameter setting for genetic

[1]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[2]  Marc Toussaint Notes on information geometry and evolutionary processes , 2004, ArXiv.

[3]  Edward A. Rietman Maintaining population diversity in a genetic algorithm: an example in developing control schemes for semiconductor manufacturing , 1997, Optics & Photonics.

[4]  Andreas C. Nearchou,et al.  The effect of various operators on the genetic search for large scheduling problems , 2004 .

[5]  Detlef Seese,et al.  A Multi-objective Approach to Integrated Risk Management , 2005, EMO.

[6]  David E. Goldberg,et al.  Towards Billion Bit Optimization via Efficient Genetic Algorithms , 2007 .

[7]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[8]  John M. Lewis,et al.  A sparse matrix representation for production scheduling using genetic algorithms , 1995, SAC '95.

[9]  D. WhitleyComputer A Free Lunch Proof for Gray versus Binary Encodings , 1999 .

[10]  Christian Prins,et al.  Competitive genetic algorithms for the open-shop scheduling problem , 2000, Math. Methods Oper. Res..

[11]  E. Weinberger NP Completeness of Kauffman's N-k Model, A Tuneable Rugged Fitness Landscape , 1996 .

[12]  Alex A. Freitas,et al.  Discovering interesting prediction rules with a genetic algorithm , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Christopher R. Stephens,et al.  Schemata as Building Blocks: Does Size Matter? , 2000, FOGA.

[14]  Christopher R. Stephens,et al.  Schemata Evolution and Building Blocks , 1999, Evolutionary Computation.

[15]  Thomas Lux,et al.  Genetic learning as an explanation of stylized facts of foreign exchange markets , 2003, 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings..

[16]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[17]  N. Packard,et al.  Neutral Search Spaces for Artificial Evolution: A Lesson From Life , 2000 .

[18]  Alden H. Wright,et al.  Neighborhood graphs and symmetric genetic operators , 2007, FOGA'07.

[19]  Olivier Teytaud,et al.  General Lower Bounds for Evolutionary Algorithms , 2006, PPSN.

[20]  Suman K. Mitra,et al.  Technique for fractal image compression using genetic algorithm , 1998, IEEE Trans. Image Process..

[21]  Jan C. van der Lubbe,et al.  Information theory , 1997 .

[22]  Claude E. Shannon,et al.  Recent Contributions to The Mathematical Theory of Communication , 2009 .

[23]  P. Pongcharoena,et al.  Determining optimum Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex products , 2002 .

[24]  Ching-Fang Liaw,et al.  A hybrid genetic algorithm for the open shop scheduling problem , 2000, Eur. J. Oper. Res..

[25]  Gunar E. Liepins,et al.  Schema Disruption , 1991, ICGA.

[26]  Stephan Mertens The Easiest Hard Problem: Number Partitioning , 2006, Computational Complexity and Statistical Physics.

[27]  Riccardo Poli,et al.  Exact Schema Theory for Genetic Programming and Variable-Length Genetic Algorithms with One-Point Crossover , 2001, Genetic Programming and Evolvable Machines.

[28]  Riccardo Poli,et al.  General Schema Theory for Genetic Programming with Subtree-Swapping Crossover , 2001, EuroGP.

[29]  David B. Skalak,et al.  Using a Genetic Algorithm to Learn Prototypes for Case Retrieval and Classification , 1993 .

[30]  Jirí Kubalík,et al.  A Selecto-recombinative Genetic Algorithm with Continuous Chromosome Reconfiguration , 2006, PPSN.

[31]  David E. Goldberg,et al.  Efficient Genetic Algorithms Using Discretization Scheduling , 2005, Evolutionary Computation.

[32]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[33]  L. Darrell Whitley,et al.  Unbiased tournament selection , 2005, GECCO '05.

[34]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[35]  Y.C. Liang,et al.  Genetic algorithm application on the job shop scheduling problem , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[36]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[37]  Annie S. Wu,et al.  Genome Length as an Evolutionary Self-adaptation , 1998, PPSN.

[38]  Hideaki Suzuki,et al.  Crossover Accelerates Evolution in GAs with a Babel-like Fitness Landscape: Mathematical Analyses , 1999, Evolutionary Computation.

[39]  H. Saunders,et al.  Digital Signal Processing (2nd Edition) , 1988 .

[40]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[41]  Symeon Papavassiliou,et al.  Dynamic market‐driven allocation of network resources using genetic algorithms in a competitive electronic commerce marketplace , 2001, Int. J. Netw. Manag..

[42]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[43]  L. Darrell Whitley,et al.  Properties of Gray and Binary Representations , 2004, Evolutionary Computation.

[44]  Jonathan E. Rowe,et al.  A Normed Space of Genetic Operators with Applications to Scalability Issues , 2001, Evolutionary Computation.

[45]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[46]  Olivier Teytaud Conditioning, Halting Criteria and Choosing lambda , 2007, Artificial Evolution.

[47]  Christopher A. Voigt,et al.  Computationally focusing the directed evolution of proteins , 2001, Journal of cellular biochemistry. Supplement.

[48]  Franz Oppacher,et al.  Maintaining Genetic Diversity in Genetic Algorithms through Co-evolution , 1998, Canadian Conference on AI.

[49]  Gabriela Ochoa,et al.  Error Thresholds in Genetic Algorithms , 2006, Evolutionary Computation.

[50]  Alvin J. Surkan,et al.  Evolutionary discovery of algorithms as circuits for quantum computers , 2002, APL '02.

[51]  Alden H. Wright,et al.  Group Properties of Crossover and Mutation , 2002, Evolutionary Computation.

[52]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[53]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[54]  Byoung-Tak Zhang,et al.  Comparison of Selection Methods for Evolutionary Optimization , 2000 .

[55]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[56]  Sieuwert van Otterloo,et al.  Evolutionary Algorithms and Scheduling Problems , 2002 .

[57]  Jonathan L. Shapiro,et al.  Diversity Loss in General Estimation of Distribution Algorithms , 2006, PPSN.

[58]  Kirk Twardowski,et al.  An associative architecture for genetic algorithm-based machine learning , 1994, Computer.

[59]  Keith E. Mathias,et al.  Hyperplane Ranking in Simple Genetic Algorithms , 1995, ICGA.

[60]  L. Darrell Whitley,et al.  Gray, Binary and Real Valued Encodings: Quad Search and Locality Proofs , 2005, FOGA.

[61]  Vcs Vincent Wiers,et al.  A review of the applicability of OR and AI scheduling techniques in practice , 1997 .

[62]  Gang Li,et al.  Genetic Algorithm Based on Independent Component Analysis for Global Optimization , 2006, PPSN.

[63]  Ingo Mierswa,et al.  A Hybrid Approach to Feature Selection and Generation Using an Evolutionary Algorithm , 2003 .

[64]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[65]  Janet Wiles,et al.  Maximally rugged NK landscapes contain the highest peaks , 2005, GECCO '05.

[66]  Keith Schmidt Using Tabu Search to Solve the Job Shop Scheduling Problem with Sequence Dependent Setup Times , 2001 .

[67]  Jessica Andrea Carballido,et al.  On Stopping Criteria for Genetic Algorithms , 2004, SBIA.

[68]  Lucila Ohno-Machado,et al.  A genetic algorithm to select variables in logistic regression: example in the domain of myocardial infarction , 1999, AMIA.

[69]  Oliver Sharpe,et al.  Towards a Rational Methodology for Using Evolutionary Search Algorithms , 2000 .

[70]  Riccardo Poli,et al.  Tournament Selection, Iterated Coupon-Collection Problem, and Backward-Chaining Evolutionary Algorithms , 2005, FOGA.

[71]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[72]  D. Goldberg,et al.  Population Sizing for Entropy-based Model Building in Genetic Algorithms , 2006 .

[73]  Jorge Puente,et al.  Heuristic Rules and Genetic Algorithms for Open Shop Scheduling Problem , 2003, CAEPIA.

[74]  H. Mühlenbein,et al.  Gene Pool Recombination in Genetic Algorithms , 1996 .

[75]  N. Mori,et al.  A thermodynamical selection rule for the genetic algorithm , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[76]  Marc Toussaint,et al.  The Structure of Evolutionary Exploration: On Crossover, Buildings Blocks, and Estimation-Of-Distribution Algorithms , 2002, GECCO.

[77]  Riccardo Poli,et al.  Exact Schema Theory and Markov Chain Models for Genetic Programming and Variable-length Genetic Algorithms with Homologous Crossover , 2004, Genetic Programming and Evolvable Machines.

[78]  Riccardo Poli,et al.  Exact Schema Theorem and Effective Fitness for GP with One-Point Crossover , 2000, GECCO.

[79]  Marco P. Tucci,et al.  A note on global optimization in adaptive control, econometrics and macroeconomics , 2002 .

[80]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[81]  David E. Goldberg,et al.  Population Sizing for Genetic Programming Based Upon Decision Making , 2005, ArXiv.

[82]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[83]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[84]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[85]  Peter Merz,et al.  Memetic algorithms for combinatorial optimization problems : fitness landscapes and effective search strategies , 2006 .

[86]  Alden H. Wright,et al.  Strong recombination, weak selection, and mutation , 2006, GECCO.

[87]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[88]  Alden H. Wright,et al.  Structural Search Spaces and Genetic Operators , 2004, Evolutionary Computation.

[89]  Colin R. Reeves,et al.  An Experimental Design Perspective on Genetic Algorithms , 1994, FOGA.

[90]  Boris Mitavskiy Crossover Invariant Subsets of the Search Space for Evolutionary Algorithms , 2004, Evolutionary Computation.

[91]  John Milton,et al.  The Effect of Mutation on the Accumulation of Information in a Genetic Algorithm , 2005, Australian Conference on Artificial Intelligence.

[92]  Marco Aurélio Cavalcanti Pacheco,et al.  Schemata Theory for the real coding and arithmetical operators , 2004, SAC '04.

[93]  Victor O. K. Li,et al.  Fixed channel assignment in cellular radio networks using a modified genetic algorithm , 1998 .