A hierarchical method for whole‐brain connectivity‐based parcellation

In modern neuroscience there is general agreement that brain function relies on networks and that connectivity is therefore of paramount importance for brain function. Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and tractography may lead to highly relevant brain maps. Existing methods typically aim to find a predefined number of areas and/or are limited to small regions of grey matter. However, it is in general not likely that a single parcellation dividing the brain into a finite number of areas is an adequate representation of the function‐anatomical organization of the brain. In this work, we propose hierarchical clustering as a solution to overcome these limitations and achieve whole‐brain parcellation. We demonstrate that this method encodes the information of the underlying structure at all granularity levels in a hierarchical tree or dendrogram. We develop an optimal tree building and processing pipeline that reduces the complexity of the tree with minimal information loss. We show how these trees can be used to compare the similarity structure of different subjects or recordings and how to extract parcellations from them. Our novel approach yields a more exhaustive representation of the real underlying structure and successfully tackles the challenge of whole‐brain parcellation. Hum Brain Mapp 35:5000–5025, 2014. © 2014 Wiley Periodicals, Inc.

[1]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[2]  Fionn Murtagh,et al.  Multidimensional clustering algorithms , 1985 .

[3]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[4]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[5]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[6]  Robert Turner,et al.  Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. , 2014, Cerebral cortex.

[7]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[8]  K. Zilles Architecture of the Human Cerebral Cortex , 2004 .

[9]  Bin Zhang,et al.  Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R , 2008, Bioinform..

[10]  Maxime Descoteaux,et al.  Quantifying Brain Connectivity: A Comparative Tractography Study , 2009, MICCAI.

[11]  J. Farris On the Cophenetic Correlation Coefficient , 1969 .

[12]  Nico S. Gorbach,et al.  Information-Theoretic Connectivity-Based Cortex Parcellation , 2011, MLINI.

[13]  C. Keysers,et al.  Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex , 2011, Human brain mapping.

[14]  Yee Whye Teh,et al.  Bayesian Rose Trees , 2010, UAI.

[15]  Stephen M. Smith,et al.  Spatially constrained hierarchical parcellation of the brain with resting-state fMRI , 2013, NeuroImage.

[16]  Michael P. Milham,et al.  A convergent functional architecture of the insula emerges across imaging modalities , 2012, NeuroImage.

[17]  D. Pham,et al.  Selection of K in K-means clustering , 2005 .

[18]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[19]  Rachid Deriche,et al.  Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers , 2010, NeuroImage.

[20]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[21]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[22]  B. Morgan,et al.  Non-uniqueness and Inversions in Cluster Analysis , 1995 .

[23]  Maxime Descoteaux,et al.  Robust clustering of massive tractography datasets , 2011, NeuroImage.

[24]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[25]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[26]  Thomas R. Knösche,et al.  Anatomical and functional parcellation of the human lateral premotor cortex , 2008, NeuroImage.

[27]  Olaf Sporns,et al.  THE HUMAN CONNECTOME: A COMPLEX NETWORK , 2011, Schizophrenia Research.

[28]  Jean-Francois Mangin,et al.  Tractography-Based Parcellation of the Cortex Using a Spatially-Informed Dimension Reduction of the Connectivity Matrix , 2009, MICCAI.

[29]  K. Amunts,et al.  Receptor mapping: architecture of the human cerebral cortex , 2009, Current opinion in neurology.

[30]  Alain Pitiot,et al.  Geometrical regularization of displacement fields for histological image registration , 2008, Medical Image Anal..

[31]  Thomas R. Knösche,et al.  k-space and q-space: Combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T , 2012, NeuroImage.

[32]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[33]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[34]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[35]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[36]  Matthew H. Davis,et al.  Is the link between anatomical structure and function equally strong at all cognitive levels of processing? , 2012, Cerebral cortex.

[37]  N. Ramsey,et al.  Reliability of two clinically relevant fiber pathways reconstructed with constrained spherical deconvolution , 2013, Magnetic resonance in medicine.

[38]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[39]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Guillermo Restrepo,et al.  Three Dissimilarity Measures to Contrast Dendrograms , 2007, J. Chem. Inf. Model..

[41]  P T Fox,et al.  Structure--function spatial covariance in the human visual cortex. , 2001, Cerebral cortex.

[42]  David R. Haynor,et al.  Multi-subject connectivity-based parcellation of the human IPL using Gaussian mixture models and hidden Markov random fields , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[43]  K. Zilles CHAPTER 27 – Architecture of the Human Cerebral Cortex: Regional and Laminar Organization , 2004 .

[44]  Rajesh Nandy,et al.  Cluster analysis of fMRI data using dendrogram sharpening , 2003, Human brain mapping.

[45]  Dietmar Cordes,et al.  Hierarchical clustering to measure connectivity in fMRI resting-state data. , 2002, Magnetic resonance imaging.

[46]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[48]  Jean-Francois Mangin,et al.  Registration of Cortical Connectivity Matrices , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[49]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[50]  G Lohmann,et al.  LIPSIA--a new software system for the evaluation of functional magnetic resonance images of the human brain. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[51]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[52]  Thomas R. Knösche,et al.  Plausibility Tracking: A method to evaluate anatomical connectivity and microstructural properties along fiber pathways , 2014, NeuroImage.

[53]  Luke J. Chang,et al.  Connectivity-Based Parcellation of the Human Orbitofrontal Cortex , 2012, The Journal of Neuroscience.

[54]  Philip S. Yu,et al.  Clustering by pattern similarity in large data sets , 2002, SIGMOD '02.

[55]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[56]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[57]  Wei Chen,et al.  A correlation-matrix-based hierarchical clustering method for functional connectivity analysis , 2012, Journal of Neuroscience Methods.

[58]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[59]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[60]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[61]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and Ventral Subregions with Anatomical and Functional Specializations , 2007, The Journal of Neuroscience.

[62]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[63]  Mark W. Woolrich,et al.  Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models , 2009, NeuroImage.

[64]  A. Schleicher,et al.  Transmitter receptors and functional anatomy of the cerebral cortex , 2004, Journal of anatomy.

[65]  Isabelle Bloch,et al.  A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns , 2003, IEEE Transactions on Medical Imaging.

[66]  Timothy E. J. Behrens,et al.  Deep and Superficial Amygdala Nuclei Projections Revealed In Vivo by Probabilistic Tractography , 2011, The Journal of Neuroscience.

[67]  Angela R. Laird,et al.  Tackling the multifunctional nature of Broca's region meta-analytically: Co-activation-based parcellation of area 44 , 2013, NeuroImage.

[68]  R Cameron Craddock,et al.  A whole brain fMRI atlas generated via spatially constrained spectral clustering , 2012, Human brain mapping.

[69]  Ludmila I. Kuncheva,et al.  Evaluation of Stability of k-Means Cluster Ensembles with Respect to Random Initialization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Derek K. Jones Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI , 2010 .

[71]  Jean-Francois Mangin,et al.  Inter-subject Connectivity-Based Parcellation of a Patch of Cerebral Cortex , 2010, MICCAI.

[72]  Lilla Zöllei,et al.  Evaluating Volumetric Brain Registration Performance Using Structural Connectivity Information , 2011, MICCAI.

[73]  Jianrong Dong,et al.  Comparing and aggregating partially resolved trees , 2008, Theor. Comput. Sci..

[74]  Nico S. Gorbach,et al.  Hierarchical Information-Based Clustering for Connectivity-Based Cortex Parcellation , 2011, Front. Neuroinform..

[75]  Douglas E. Critchlow,et al.  THE TRIPLES DISTANCE FOR ROOTED BIFURCATING PHYLOGENETIC TREES , 1996 .

[76]  M. Tittgemeyer,et al.  The Role of Long-Range Connectivity for the Characterization of the Functional–Anatomical Organization of the Cortex , 2011, Front. Syst.Neurosci..

[77]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[78]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[79]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.