Effect of mineralogical variations on physico-mechanical and thermal properties of granitic rocks

[1]  M. Azer,et al.  Thermal and physico-mechanical evaluation of some magmatic rocks at Homrit Waggat Area, Eastern Desert, Egypt: petrography and geochemistry , 2023, Bulletin of Engineering Geology and the Environment.

[2]  M. Rashwan,et al.  Tracking the pozzolanic activity of mafic rock powder on durability performance of cement pastes under adverse conditions: Physico-mechanical, mineralogy, microstructure, and heat of hydration , 2023, Journal of Building Engineering.

[3]  Ayten Çalık,et al.  Relationship of petrographic and mineralogical characteristics with mechanical strength properties of granitic rocks: a case study from the Biga Peninsula, NW Turkey , 2023, Turkish Journal of Earth Sciences.

[4]  M. Rashwan,et al.  Low-cost, highly-performance fired clay bodies incorporating natural stone sludge: Microstructure and engineering properties , 2022, Cleaner Waste Systems.

[5]  D. Freire-Lista,et al.  Weathering detection of granite from three asynchronous historical quarries of Sabrosa municipally (North Portugal) , 2022, Journal of Cultural Heritage.

[6]  D. Lentz,et al.  Occurrences and genesis of emerald and others beryl mineralization in Egypt: A review , 2022, Physics and Chemistry of the Earth, Parts A/B/C.

[7]  R. Abart,et al.  Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr–Nd Isotope Systematics, and Mineral Chemistry , 2022, ACS Earth and Space Chemistry.

[8]  G. Saleh,et al.  Petrogenesis of ilmenite-bearing mafic intrusions: A case study of Abu Ghalaga area, South Eastern Desert, Egypt , 2022, Arabian Journal of Geosciences.

[9]  H. Awad,et al.  Implementation of Petrographical and Aeromagnetic Data to Determine Depth and Structural Trend of Homrit Waggat Area, Central Eastern Desert, Egypt , 2022, Applied Sciences.

[10]  H. Awad,et al.  Radiological Hazards and Natural Radionuclide Distribution in Granitic Rocks of Homrit Waggat Area, Central Eastern Desert, Egypt , 2022, Materials.

[11]  G. Saleh,et al.  Exploration and Petrogenesis of Corundum-Bearing Pegmatites: A Case Study in Migif-Hafafit Area, Egypt , 2022, Frontiers in Earth Science.

[12]  A. M. Alzahrani,et al.  Relationship of Mineralogical Composition to Thermal Expansion, Spectral Reflectance, and Physico-Mechanical Aspects of Commercial Ornamental Granitic Rocks , 2022, Materials.

[13]  G. Saleh,et al.  Geochemistry and paleoweathering of metasediments and pyrite-bearing quartzite during the Neoproterozoic Era, Wadi Ibib-Wadi Suwawrib, South Eastern Desert, Egypt , 2021, Arabian Journal of Geosciences.

[14]  Mayeen Uddin Khandaker,et al.  Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity , 2021, Materials.

[15]  Shamshad Ahmad,et al.  Magmatic and metamorphic history of the Proterozoic Lesser Himalayan Crystallines from Bomdila area, Arunachal Pradesh, NE Lesser Himalaya, India: Constraints from whole rock and mineral chemistry , 2021, Geological Journal.

[16]  M. Alwetaishi,et al.  Petrogenesis of Neoproterozoic Ultramafic Rocks, Wadi Ibib–Wadi Shani, South Eastern Desert, Egypt: Constraints from Whole Rock and Mineral Chemistry , 2021, Applied Sciences.

[17]  Shamsuddin Shahid,et al.  Future precipitation changes in Egypt under the 1.5 °C and 2.0 °C global warming goals using CMIP6 multimodel ensemble , 2021, Atmospheric Research.

[18]  J. S. Pozo-Antonio,et al.  Evaluation of combined effects of real-fire and natural environment in a building granite , 2021 .

[19]  J. Eslami,et al.  High temperature behaviour of various natural building stones , 2020 .

[20]  H. Konietzky,et al.  Laboratory testing and numerical simulation of properties and thermal-induced cracking of Eibenstock granite at elevated temperatures , 2020, Acta Geotechnica.

[21]  P. Asimow,et al.  Assessment of magmatic versus post-magmatic processes in the Mueilha rare-metal granite, Eastern Desert of Egypt, Arabian-Nubian Shield , 2020, Lithos.

[22]  J. A. Sampaio,et al.  Ornamental stone wastes as an alternate raw material for soda-lime glass manufacturing , 2020, Materials Letters.

[23]  M. Ghafoori,et al.  The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification , 2020 .

[24]  P. Kalla,et al.  Influence of dimensional stone waste on mechanical and durability properties of mortar: A review , 2019 .

[25]  M. Eid,et al.  TEMPERATURE ANALYSIS OVER EGYPT , 2019 .

[26]  P. Asimow,et al.  Tracking the transition from subduction‐related to post‐collisional magmatism in the north Arabian–Nubian Shield: A case study from the Homrit Waggat area of the Eastern Desert of Egypt , 2019, Geological Journal.

[27]  T. Singh,et al.  Experimental investigations on the thermal properties of Jalore granitic rocks for nuclear waste repository , 2019, Thermochimica Acta.

[28]  S. Mahmoud Geology, mineralogy and mineral chemistry of the NYF-type pegmatites at the Gabal El Faliq area, South Eastern Desert, Egypt , 2019, Journal of Earth System Science.

[29]  Magnus Ericsson,et al.  XXIX World Marble and Stones Report 2018 by Carlo Montani , 2019, Mineral Economics.

[30]  M. Rashwan,et al.  Incorporation of metagabbro as cement replacement in cement-based materials: A role of mafic minerals on the physico-mechanical and durability properties , 2019, Construction and Building Materials.

[31]  Nicola Careddu,et al.  Dimension stones in the circular economy world , 2019, Resources Policy.

[32]  P. Lampropoulou,et al.  The Effect of Petrographic Characteristics and Physico-Mechanical Properties of Aggregates on the Quality of Concrete , 2018, Minerals.

[33]  H. Woodrow,et al.  : A Review of the , 2018 .

[34]  P. Lampropoulou,et al.  The Influence of Alteration of Aggregates on the Quality of the Concrete: A Case Study from Serpentinites and Andesites from Central Macedonia (North Greece) , 2018 .

[35]  Luís M.O. Sousa,et al.  Thermal expansion of granitoids , 2018, Environmental Earth Sciences.

[36]  H. K. Verma,et al.  Recycling of dimensional stone waste in concrete: A review , 2016 .

[37]  M. M. El-Attar,et al.  Reusing of marble and granite powders in self-compacting concrete for sustainable development , 2016 .

[38]  A. Kožušníková,et al.  Thermal expansion behaviour of granites , 2016, Journal of Thermal Analysis and Calorimetry.

[39]  Ahmed O. Mashaly,et al.  Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks , 2016 .

[40]  Á. Török,et al.  The effect of temperature on the strength of two different granites , 2015 .

[41]  J. Moyen,et al.  The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga , 2014 .

[42]  P. Pomonis,et al.  The impact of petrographic characteristics on the engineering properties of ultrabasic rocks from northern and central Greece , 2012 .

[43]  G. Vasconcelos,et al.  Modelling the compressive mechanical behaviour of granite and sandstone historical building stones , 2012 .

[44]  Rogério Pinto Ribeiro,et al.  Sawing of blocks of siliceous dimension stone: influence of texture and mineralogy , 2007 .

[45]  B. Rudolf,et al.  World Map of the Köppen-Geiger climate classification updated , 2006 .

[46]  A. B. Paraguassú,et al.  Linear thermal expansion of granitic rocks: influence of apparent porosity, grain size and quartz content , 2004 .

[47]  R. W. Evans,et al.  A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures , 2001 .

[48]  P. Sylvester Post-Collisional Alkaline Granites , 1989, The Journal of Geology.

[49]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[50]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[51]  L. P. Sarma,et al.  Thermal expansion of a few Indian granitic rocks , 1980 .

[52]  A. Streckeisen To each plutonic rock its proper name , 1976 .

[53]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .

[54]  ROBERT. F. LEGGET,et al.  American Society for Testing and Materials , 1964, Nature.

[55]  M. Hamdy,et al.  Gold-bearing listwaenites in ophiolitic ultramafics from the Eastern Desert of Egypt: Subduction zone-related alteration of Neoproterozoic mantle? , 2022, Journal of African Earth Sciences.

[56]  H. Zabidi,et al.  Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor , 2016 .

[57]  M. Gouda,et al.  Effect of Petrographical Characteristics on the Engineering Properties of Some Egyptian Ornamental Stones , 2015 .

[58]  I. Salem,et al.  Gabal El Faliq Granitoid rocks of the Southeastern Desert, Egypt: Geochemical constraints, mineralization and Spectrometric Prospecting , 2014 .

[59]  T. Huotari Thermal fxpansion Properties of Rocks: literature Survey and fstimation of Thermal fxpansion Coefficient for Olkiluoto Mica Gneiss , 2004 .

[60]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[61]  J. Leterrier,et al.  A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses — Its relationships with current nomenclature , 1980 .

[62]  R. Balk The Petrology of the Igneous Rocks , 1926, Nature.