Duty Scheduling in Public Transit

This article is about adaptive column generation techniques for the solution of duty scheduling problems in public transit. The current optimization status is exploited in an adaptive approach to guide the subroutines for duty generation, LP resolution, and schedule construction toward relevant parts of a large problem. Computational results for three European scenarios are reported.

[1]  Nicos Christofides,et al.  An algorithm for the resource constrained shortest path problem , 1989, Networks.

[2]  Jean-Marc Rousseau,et al.  Results Obtained with Crew-Opt: A Column Generation Method for Transit Crew Scheduling , 1995 .

[3]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[4]  M. Desrochers,et al.  A reoptimization algorithm for the shortest path problem with time windows , 1988 .

[5]  Katta G. Murty,et al.  Mathematical programming: State of the art 1994 , 1994 .

[6]  Peter Sanders,et al.  High Performance Integer Optimization for Crew Scheduling , 1999, HPCN Europe.

[7]  Jacques Desrosiers,et al.  Time Constrained Routing and Scheduling , 1992 .

[8]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[9]  Dag Wedelin,et al.  The design of a 0–1 integer optimizer and its application in the Carmen system , 1995 .

[10]  Jacques Desrosiers,et al.  Accelerating Strategies in Column Generation Methods for Vehicle Routing and Crew Scheduling Problems , 2002 .

[11]  J. Beasley An algorithm for set covering problem , 1987 .

[12]  Dag Wedelin,et al.  An algorithm for large scale 0–1 integer programming with application to airline crew scheduling , 1995, Ann. Oper. Res..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Teodor Gabriel Crainic,et al.  Fleet management and logistics , 1998 .

[15]  Jacques Desrosiers,et al.  Routing with time windows by column generation , 1983, Networks.

[16]  R. Borndörfer,et al.  Aspects of Set Packing, Partitioning, and Covering , 1998 .

[17]  Kurt Mehlhorn,et al.  Resource Constrained Shortest Paths , 2000, ESA.

[18]  Gang Yu,et al.  OPERATIONS RESEARCH IN THE AIRLINE INDUSTRY. , 1998 .

[19]  Martin Desrochers,et al.  Computer-Aided Transit Scheduling , 1992 .

[20]  José M. P. Paixão,et al.  COMPUTER-AIDED TRANSIT SCHEDULING: PROCEEDINGS OF THE SIXTH INTERNATIONAL WORKSHOP ON COMPUTER-AIDED SCHEDULING OF PUBLIC TRANSPORT , 1995 .

[21]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[22]  François Soumis,et al.  Decomposition and Column Generation , 1997 .

[23]  Martin Desrochers,et al.  A Column Generation Approach to the Urban Transit Crew Scheduling Problem , 1987, Transp. Sci..

[24]  Matteo Fischetti,et al.  A polyhedral study of the asymmetric traveling salesman problem with time windows , 2000, Networks.

[25]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[26]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[27]  Antonio Sassano,et al.  A Lagrangian-based heuristic for large-scale set covering problems , 1998, Math. Program..

[28]  Andrew C. Ho,et al.  Set covering algorithms using cutting planes, heuristics, and subgradient optimization: A computational study , 1980 .

[29]  Arthur Warburton,et al.  Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems , 1987, Oper. Res..

[30]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[31]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[32]  李幼升,et al.  Ph , 1989 .

[33]  Martin Desrochers,et al.  CREW-OPT: Subproblem Modeling in a Column Generation Approach to Urban Crew Scheduling , 1992 .

[34]  Erik Andersson,et al.  Crew Pairing Optimization , 1998 .

[35]  Jacques Desrosiers,et al.  A Unified Framework for Deterministic Time Constrained Vehicle Routing and Crew Scheduling Problems , 1998 .

[36]  Jacques Desrosiers,et al.  Crew pairing for a regional carrier , 1997 .

[37]  Gabriel Y. Handler,et al.  A dual algorithm for the constrained shortest path problem , 1980, Networks.

[38]  Leo G. Kroon,et al.  Scheduling train drivers and guards: the Dutch "Noord-Oost" case , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[39]  M. Desrochers,et al.  A Generalized Permanent Labelling Algorithm For The Shortest Path Problem With Time Windows , 1988 .

[40]  Andreas Löbel,et al.  Experiments with a Dantzig-Wolfe Decomposition for Multiple-Depot Vehicle Scheduling Problems , 1997 .

[41]  M. B. Wright Computer-aided Transit Scheduling , 1990 .

[42]  Robert E. Bixby,et al.  Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods , 1992, Oper. Res..

[43]  Celso C. Ribeiro,et al.  A heuristic approach to hard constrained shortest path problems , 1985, Discret. Appl. Math..

[44]  R. E. Marsten,et al.  The Boxstep Method for Large-Scale Optimization , 2011, Oper. Res..

[45]  M. Fisher,et al.  Optimal solution of set covering/partitioning problems using dual heuristics , 1990 .

[46]  Matteo Fischetti,et al.  A Heuristic Algorithm for the Set Covering Problem , 1996, IPCO.

[47]  Anthony Wren,et al.  Bus Driver Scheduling — An Overview , 1995 .

[48]  M. Grötschel,et al.  A polyhedral study of the asymmetric traveling salesman problem with time windows , 2000 .

[49]  Roy E. Marsten,et al.  Exact solution of crew scheduling problems using the set partitioning model: Recent successful applications , 1981, Networks.

[50]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .