Design of linear dispersion codes: asymptotic guidelines and their implementation

In this paper, a design method is developed for the class of linear-dispersion (LD) codes - a diverse set of space-time codes that subsumes several standard designs. The development begins by showing that for systems that employ a large number of transmit antennas, LD codes constructed from unitary coding matrices are asymptotically optimum from different design perspectives, viz., minimum mean square error (MMSE), mutual information, and average pairwise error probability (PEP). Those measures have a direct impact on the detection complexity, data rate, and error performance that a space-time code can achieve. Using the insight generated by the asymptotic result, a structured design technique for the LD coding matrices, that suits a broad class of configurations is provided. The resulting codes can support high data rates and provide performance advantages over current designs when decoded with a standard detector. Based on the asymptotic results, a row interleaving scheme is proposed, and it is shown to result in significant performance enhancement.

[1]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[2]  Georgios B. Giannakis,et al.  Space-time diversity systems based on linear constellation precoding , 2003, IEEE Trans. Wirel. Commun..

[3]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[4]  Hesham El Gamal,et al.  On the design of algebraic space-time codes for MIMO block-fading channels , 2003, IEEE Trans. Inf. Theory.

[5]  M. Tismenetsky,et al.  Kronecker Products and Matrix Calculus (Alexander Graham) , 1983 .

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[8]  Babak Hassibi,et al.  Cayley differential unitary space - Time codes , 2002, IEEE Trans. Inf. Theory.

[9]  P. Diaconis,et al.  Brownian motion and the classical groups , 2002 .

[10]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[11]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[12]  Jean-Claude Belfiore,et al.  Quaternionic lattices for space-time coding , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[13]  Georgios B. Giannakis,et al.  Full-diversity full-rate complex-field space-time coding , 2003, IEEE Trans. Signal Process..

[14]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[15]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[16]  Alexei A. Gaivoronski,et al.  Stochastic Quasigradient Methods and their Implementation , 1988 .

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  Reinaldo A. Valenzuela,et al.  Simplified processing for high spectral efficiency wireless communication employing multi-element arrays , 1999, IEEE J. Sel. Areas Commun..

[19]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[20]  Norman C. Beaulieu,et al.  Linear threaded algebraic space-time constellations , 2003, IEEE Trans. Inf. Theory.

[21]  L. Nachbin,et al.  The Haar integral , 1965 .

[22]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[23]  John M. Cioffi,et al.  On the relation between V-BLAST and the GDFE , 2001, IEEE Communications Letters.

[24]  Robert W. Heath,et al.  Linear dispersion codes for MIMO systems based on frame theory , 2002, IEEE Trans. Signal Process..

[25]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[26]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[27]  M. O. Damen,et al.  Generalised sphere decoder for asymmetrical space-time communication architecture , 2000 .

[28]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.

[29]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[30]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[31]  Lizhong Zheng,et al.  Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel , 2002, IEEE Trans. Inf. Theory.

[32]  Olav Tirkkonen,et al.  Linear matrix modulators from group representation theory , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[33]  Ran Gozali,et al.  Space-Time Codes for High Data Rate Wireless Communications , 2002 .

[34]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .