Magnetic ions in wide band gap semiconductor nanocrystals for optimized thermoelectric properties

Here we propose a new concept in which incorporated magnetic ions create spin entropy, a narrowed band-gap and stronger anharmonic phonon coupling to obtain a larger Seebeck coefficient, higher electrical conductivity and lower thermal conductivity for significant improvement of the ZT value. This idea is experimentally achieved both with magnetic ion doping and full substitution of quaternary chalcogenide nanocrystals: the ZT value of Ni-doped Cu2ZnSnS4 is extraordinarily enhanced by 7.4 times compared to that of pure Cu2ZnSnS4, while Cu2CoSnS4 shows a 9.2 times improvement.

[1]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[2]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[3]  Jie Zhang,et al.  High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. , 2012, Journal of the American Chemical Society.

[4]  A. Maignan,et al.  Scaling behavior in thermoelectric misfit cobalt oxides. , 2006, Physical review letters.

[5]  Youwei Du,et al.  Enhancement of the spin entropy in NaxCo2O4 by Ni doping , 2010 .

[6]  Kun Li,et al.  Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. , 2012, Journal of the American Chemical Society.

[7]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[8]  Song Jin,et al.  Enhancement of the thermoelectric properties in nanoscale and nanostructured materials , 2011 .

[9]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[10]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[11]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[12]  Genqiang Zhang,et al.  Enhanced Thermoelectric Properties of Core/Shell Heterostructure Nanowire Composites , 2008 .

[13]  Ziyu Wu,et al.  Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. , 2011, Journal of the American Chemical Society.

[14]  I-Wei Chen,et al.  A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S,Se) , 2009 .

[15]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[16]  N. Holden TABLE OF THE ISOTOPES , 2003 .

[17]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[18]  K. Ocakoglu,et al.  EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals , 2012 .

[19]  Terry M. Tritt,et al.  Thermoelectric Phenomena, Materials, and Applications , 2011 .

[20]  V. Ozoliņš,et al.  First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors , 2012 .

[21]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[22]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[23]  Kun Li,et al.  Solid-solutioned homojunction nanoplates with disordered lattice: a promising approach toward "phonon glass electron crystal" thermoelectric materials. , 2012, Journal of the American Chemical Society.

[24]  Jinzhong Zhang,et al.  Temperature dependence of phonon modes, dielectric functions, and interband electronic transitions in Cu2ZnSnS4 semiconductor films. , 2012, Physical chemistry chemical physics : PCCP.

[25]  Jordi Arbiol,et al.  Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. , 2012, Journal of the American Chemical Society.

[26]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[27]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[28]  N. P. Ong,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[29]  Yue Wu,et al.  Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. , 2012, Nano letters.

[30]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[31]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[32]  Wolfgang Tremel,et al.  Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn(1-x)Fe(x)GeSe4. , 2013, Journal of the American Chemical Society.

[33]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[34]  Liang Shi,et al.  Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. , 2011, Journal of the American Chemical Society.

[35]  Fuqiang Huang,et al.  Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4 , 2009 .

[36]  H. Haeuseler,et al.  Far infrared studies on stannite and wurtzstannite type compounds , 1991 .

[37]  B. Robinson,et al.  Hyperfine Coupling in Colloidal n-Type ZnO Quantum Dots: Effects on Electron Spin Relaxation , 2010 .