Ant Colony Optimization based clustering methodology

A novel ACO based methodology (ACO-C) is proposed for spatial clustering.It works in data sets with no a priori information.It includes solution evaluation, neighborhood construction and data set reduction.It has a multi-objective framework, and yields a set of non-dominated solutions.Experimental results show that ACO-C outperforms other competing approaches. In this work we consider spatial clustering problem with no a priori information. The number of clusters is unknown, and clusters may have arbitrary shapes and density differences. The proposed clustering methodology addresses several challenges of the clustering problem including solution evaluation, neighborhood construction, and data set reduction. In this context, we first introduce two objective functions, namely adjusted compactness and relative separation. Each objective function evaluates the clustering solution with respect to the local characteristics of the neighborhoods. This allows us to measure the quality of a wide range of clustering solutions without a priori information. Next, using the two objective functions we present a novel clustering methodology based on Ant Colony Optimization (ACO-C). ACO-C works in a multi-objective setting and yields a set of non-dominated solutions. ACO-C has two pre-processing steps: neighborhood construction and data set reduction. The former extracts the local characteristics of data points, whereas the latter is used for scalability. We compare the proposed methodology with other clustering approaches. The experimental results indicate that ACO-C outperforms the competing approaches. The multi-objective evaluation mechanism relative to the neighborhoods enhances the extraction of the arbitrary-shaped clusters having density variations.

[1]  Way Kuo,et al.  A model-based clustering approach to the recognition of the spatial defect patterns produced during semiconductor fabrication , 2007 .

[2]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[3]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[4]  Sanghamitra Bandyopadhyay,et al.  Some connectivity based cluster validity indices , 2012, Appl. Soft Comput..

[5]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[6]  Weiguo Sheng,et al.  A weighted sum validity function for clustering with a hybrid niching genetic algorithm , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[8]  Cheng-Fa Tsai,et al.  ACODF: a novel data clustering approach for data mining in large databases , 2004 .

[9]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .

[10]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[11]  Gilles Venturini,et al.  A hierarchical ant based clustering algorithm and its use in three real-world applications , 2007, Eur. J. Oper. Res..

[12]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[13]  Marco Dorigo,et al.  Ant-Based Clustering and Topographic Mapping , 2006, Artificial Life.

[14]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[15]  Jean-Louis Deneubourg,et al.  The dynamics of collective sorting robot-like ants and ant-like robots , 1991 .

[16]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[17]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[18]  Taher Niknam,et al.  An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis , 2010, Appl. Soft Comput..

[19]  Xiaoyong Liu,et al.  An Effective Clustering Algorithm With Ant Colony , 2010, J. Comput..

[20]  Sriparna Saha,et al.  A generalized automatic clustering algorithm in a multiobjective framework , 2013, Appl. Soft Comput..

[21]  Tomoyuki Hiroyasu,et al.  Multiobjective clustering with automatic k-determination for large-scale data , 2007, GECCO '07.

[22]  Ujjwal Maulik,et al.  Genetic clustering for automatic evolution of clusters and application to image classification , 2002, Pattern Recognit..

[23]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[24]  Nazmul H. Siddique,et al.  Evolutionary multi-objective clustering for overlapping clusters detection , 2009, 2009 IEEE Congress on Evolutionary Computation.

[25]  Thomas A. Runkler Ant colony optimization of clustering models: Research Articles , 2005 .

[26]  Julia Handl,et al.  Improved Ant-Based Clustering and Sorting , 2002, PPSN.

[27]  Yucheng Kao,et al.  An ant-based clustering algorithm for manufacturing cell design , 2006 .

[28]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[29]  Ajith Abraham,et al.  Data Clustering Using Multi-objective Differential Evolution Algorithms , 2009, Fundam. Informaticae.

[30]  Way Kuo,et al.  Detection and classification of defect patterns on semiconductor wafers , 2006 .

[31]  Sanghamitra Bandyopadhyay,et al.  GAPS: A clustering method using a new point symmetry-based distance measure , 2007, Pattern Recognit..

[32]  B. Kulkarni,et al.  An ant colony approach for clustering , 2004 .

[33]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[34]  Urszula Boryczka Finding Groups in Data: Cluster Analysis with Ants , 2006, ISDA.

[35]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[36]  Nelson F. F. Ebecken,et al.  A genetic algorithm for cluster analysis , 2003, Intell. Data Anal..

[37]  Amit Konar,et al.  Clustering Using Multi-objective Differential Evolution Algorithms , 2009 .

[38]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[39]  Harith Alani,et al.  Voronoi-based region approximation for geographical information retrieval with gazetteers , 2001, Int. J. Geogr. Inf. Sci..

[40]  Suresh P. Sethi,et al.  A dynamic lot sizing problem with multiple customers: customer-specific shipping and backlogging costs , 2007 .

[41]  Farid Melgani,et al.  Clustering of Hyperspectral Images Based on Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[43]  Cong Wang,et al.  Chaotic ant swarm approach for data clustering , 2012, Appl. Soft Comput..

[44]  Nur Evin Özdemirel,et al.  An adaptive neighbourhood construction algorithm based on density and connectivity , 2015, Pattern Recognit. Lett..

[45]  Yong Wang,et al.  Data clustering method based on ant swarm intelligence , 2009, 2009 2nd IEEE International Conference on Computer Science and Information Technology.

[46]  An-Pin Chen,et al.  A new efficient approach for data clustering in electronic library using ant colony clustering algorithm , 2006, Electron. Libr..

[47]  Lei Zhang,et al.  A novel ant-based clustering algorithm using Renyi entropy , 2013, Appl. Soft Comput..

[48]  Joshua D. Knowles,et al.  Evolutionary Multiobjective Clustering , 2004, PPSN.

[49]  Cheng-Lung Huang,et al.  Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering , 2013, Appl. Soft Comput..

[50]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  C. Iyigun Probabilistic Distance Clustering , 2011 .

[52]  Nicolas Monmarché,et al.  On Improving Clustering in Numerical Databases with Artificial Ants , 1999, ECAL.

[53]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[54]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[55]  Siu Cheung Hui,et al.  A Novel Ant-Based Clustering Approach for Document Clustering , 2006, AIRS.

[56]  Hong Tat Ewe,et al.  A hybrid ant colony optimization approach (hACO) for constructing load-balanced clusters , 2005, 2005 IEEE Congress on Evolutionary Computation.

[57]  Baldo Faieta,et al.  Diversity and adaptation in populations of clustering ants , 1994 .

[58]  Bastien Chopard,et al.  Formation of an ant cemetery: swarm intelligence or statistical accident? , 2002, Future Gener. Comput. Syst..

[59]  Gadadhar Sahoo,et al.  Ant colony based hybrid optimization for data clustering , 2007, Kybernetes.

[60]  Chih-Cheng Hung,et al.  Hybridization of the Ant Colony Optimization with the K-Means Algorithm for Clustering , 2005, SCIA.

[61]  Maoguo Gong,et al.  Solving multiobjective clustering using an immune-inspired algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[62]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  R. J. Kuo,et al.  Application of ant K-means on clustering analysis , 2005 .

[64]  Sanghamitra Bandyopadhyay,et al.  A Point Symmetry-Based Clustering Technique for Automatic Evolution of Clusters , 2008, IEEE Transactions on Knowledge and Data Engineering.

[65]  Sanghamitra Bandyopadhyay,et al.  A symmetry based multiobjective clustering technique for automatic evolution of clusters , 2010, Pattern Recognit..

[66]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[67]  Ashish Ghosh,et al.  Aggregation pheromone density based data clustering , 2008, Inf. Sci..

[68]  S. Bandyopadhyay,et al.  Nonparametric genetic clustering: comparison of validity indices , 2001, IEEE Trans. Syst. Man Cybern. Syst..

[69]  Marc Alexa,et al.  Point-based computer graphics , 2004, SIGGRAPH '04.

[70]  Thomas A. Runkler Ant colony optimization of clustering models , 2005, Int. J. Intell. Syst..

[71]  Chun-Wei Tsai,et al.  A modified multiobjective EA-based clustering algorithm with automatic determination of the number of clusters , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[72]  HalkidiMaria,et al.  Cluster validity methods , 2002 .

[73]  Mohamed S. Kamel,et al.  An aggregated clustering approach using multi-ant colonies algorithms , 2006, Pattern Recognit..

[74]  Marc Teboulle,et al.  Grouping Multidimensional Data - Recent Advances in Clustering , 2006 .

[75]  Julia Handl,et al.  Ant-based and swarm-based clustering , 2007, Swarm Intelligence.