Thermal behavior as indicator for hyperons in binary neutron star merger remnants

We provide the first comprehensive study of hyperons in neutron star mergers and quantify their specific impact. We discuss the thermal behavior of hyperonic equations of state~(EoSs) as a distinguishing feature from purely nucleonic models in the remnants of binary mergers. Finite temperature enhances the production of hyperons, which leads to a reduced pressure as highly degenerate nucleons are depopulated. This results in a characteristic increase of the dominant postmerger gravitational-wave frequency by up to $\sim150$~Hz compared to purely nucleonic EoS models. By our comparative approach we can directly link this effect to the occurrence of hyperons. Although this feature is generally weak, it is in principle measurable if the EoS and stellar parameters of cold neutron stars are sufficiently well determined. Considering that the mass-radius relations of purely nucleonic and hyperonic EoSs may be indistinguishable and the overall challenge to infer the presence of hyperons in neutron stars, these findings are important as a new route to answer the outstanding question about hyperonic degrees of freedom in high-density matter.

[1]  V. Paschalidis,et al.  Influence of stellar compactness on finite-temperature effects in neutron star merger simulations , 2023, Physical Review D.

[2]  G. Raaijmakers,et al.  Constraining fundamental nuclear physics parameters using neutron star mass-radius measurements I: Nucleonic models , 2023, 2303.17518.

[3]  J. Haidenbauer,et al.  Hyperon–nucleon interaction in chiral effective field theory at next-to-next-to-leading order , 2023 .

[4]  A. Bauswein,et al.  Impact of pions on binary neutron star mergers , 2023, Physical Review D.

[5]  A. Sedrakian,et al.  Heavy baryons in compact stars , 2022, Progress in Particle and Nuclear Physics.

[6]  Galin L. Jones,et al.  Hierarchical Bayesian method for constraining the neutron star equation of state with an ensemble of binary neutron star postmerger remnants , 2022, Physical Review D.

[7]  A. Filippenko,et al.  PSR J0952−0607: The Fastest and Heaviest Known Galactic Neutron Star , 2022, The Astrophysical Journal Letters.

[8]  S. L. La Pointe,et al.  Exploring the NΛ–NΣ coupled system with high precision correlation techniques at the LHC , 2022, Physics Letters B.

[9]  À. Ramos,et al.  Equation of state for hot hyperonic neutron star matter , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  Samir R Das,et al.  Towards the understanding of the genuine three-body interaction for p–p–p and p–p–Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begi , 2022, The European Physical Journal A.

[11]  C. Providencia,et al.  Bayesian inference of signatures of hyperons inside neutron stars , 2022, Physical Review D.

[12]  S. Bernuzzi,et al.  Kilohertz Gravitational Waves from Binary Neutron Star Mergers: Inference of Postmerger Signals with the Einstein Telescope , 2022, 2205.09979.

[13]  A. Raduta Equations of state for hot neutron stars-II. The role of exotic particle degrees of freedom , 2022, The European Physical Journal A.

[14]  A. Schwenk,et al.  Nuclear Equation of State for Arbitrary Proton Fraction and Temperature Based on Chiral Effective Field Theory and a Gaussian Process Emulator. , 2022, Physical review letters.

[15]  A. Roggero,et al.  Quantum Monte Carlo calculations in configuration space with three-nucleon forces , 2022, Physical Review C.

[16]  G. Mathews,et al.  Binary neutron star mergers as a probe of quark-hadron crossover equations of state , 2022, Physical Review D.

[17]  A. Sedrakian,et al.  Delta-resonances and hyperons in proto-neutron stars and merger remnants , 2022, The European Physical Journal A.

[18]  R. Wiringa,et al.  Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials , 2022, Physical Review C.

[19]  K. Chatziioannou,et al.  Probing neutron stars with the full premerger and postmerger gravitational wave signal from binary coalescences , 2022, Physical Review D.

[20]  S. Kim,et al.  Precise Measurement of Differential Cross Sections of the Σ^{-}p→Λn Reaction in Momentum Range 470-650  MeV/c. , 2022, Physical review letters.

[21]  S. Kim,et al.  Measurement of the differential cross sections of the Σ−p elastic scattering in momentum range 470 to 850 MeV/c , 2021, Physical Review C.

[22]  A. Alaoui,et al.  Improved $\Lambda p$ Elastic Scattering Cross Sections Between 0.9 and 2.0 GeV/c and Connections to the Neutron Star Equation of State , 2021, 2108.03134.

[23]  A. Steiner,et al.  Hot and dense matter equation of state probability distributions for astrophysical simulations , 2021, Physical Review C.

[24]  M. Coughlin,et al.  Constraining neutron-star matter with microscopic and macroscopic collisions , 2021, Nature.

[25]  S. Bernuzzi,et al.  Signatures of deconfined quark phases in binary neutron star mergers , 2021, Physical Review D.

[26]  T. Tatsumi,et al.  Effects of three-baryon forces on kaon condensation in hyperon-mixed matter , 2021, 2106.03449.

[27]  A. Sedrakian,et al.  Hyperonization in compact stars , 2021, 2105.14050.

[28]  I. Cognard,et al.  The Radius of PSR J0740+6620 from NICER and XMM-Newton Data , 2021, The Astrophysical Journal Letters.

[29]  T. E. Riley,et al.  Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations , 2021, The Astrophysical Journal Letters.

[30]  G. Burgio,et al.  Neutron stars and the nuclear equation of state , 2021, 2105.03747.

[31]  T. E. Riley,et al.  A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy , 2021, The Astrophysical Journal Letters.

[32]  V. Paschalidis,et al.  Realistic finite-temperature effects in neutron star merger simulations , 2021, Physical Review D.

[33]  B. W. Meyers,et al.  Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620 , 2021, The Astrophysical Journal Letters.

[34]  S. Banik,et al.  Equation-of-state Table with Hyperon and Antikaon for Supernova and Neutron Star Merger , 2021, The Astrophysical Journal.

[35]  N. Stergioulas,et al.  Frequency deviations in universal relations of isolated neutron stars and postmerger remnants , 2021, Physical Review D.

[36]  A. Sedrakian,et al.  Massive Δ -resonance admixed hypernuclear stars with antikaon condensations , 2021, Physical Review D.

[37]  C. Providência,et al.  Thermal evolution of relativistic hyperonic compact stars with calibrated equations of state , 2021, 2102.07565.

[38]  A. Schwenk,et al.  New equations of state constrained by nuclear physics, observations, and QCD calculations of high-density nuclear matter , 2021, Physical Review C.

[39]  C. Drischler,et al.  Chiral Effective Field Theory and the High-Density Nuclear Equation of State , 2021, 2101.01709.

[40]  S. Bernuzzi,et al.  AT2017gfo: Bayesian inference and model selection of multicomponent kilonovae and constraints on the neutron star equation of state , 2021, 2101.01201.

[41]  L. Fabbietti,et al.  Study of the Strong Interaction Among Hadrons with Correlations at the LHC , 2020, Annual Review of Nuclear and Particle Science.

[42]  M. Coughlin,et al.  Multimessenger constraints on the neutron-star equation of state and the Hubble constant , 2020, Science.

[43]  A. Perego,et al.  Microscopic equation of state of hot nuclear matter for numerical relativity simulations , 2020, Astronomy & Astrophysics.

[44]  S. L. La Pointe,et al.  Unveiling the strong interaction among hadrons at the LHC , 2020, Nature.

[45]  A. Schwenk,et al.  Neutron matter at finite temperature based on chiral effective field theory interactions , 2020, 2011.05855.

[46]  C. Palenzuela,et al.  Effects of high density phase transitions on neutron star dynamics , 2020, Classical and Quantum Gravity.

[47]  J. Schaffner-Bielich Compact Star Physics , 2020 .

[48]  R. O’Shaughnessy,et al.  Combining Electromagnetic and Gravitational-Wave Constraints on Neutron-Star Masses and Radii. , 2020, Physical review letters.

[49]  J. Haidenbauer,et al.  Jacobi no-core shell model for p-shell hypernuclei , 2020, The European Physical Journal A.

[50]  H. Hergert A Guided Tour of ab initio Nuclear Many-Body Theory , 2020, Frontiers in Physics.

[51]  A. Bauswein,et al.  Impact of quark deconfinement in neutron star mergers and hybrid star mergers , 2020, The European Physical Journal Special Topics.

[52]  P. Lasky,et al.  Detection and parameter estimation of binary neutron star merger remnants , 2020, Physical Review D.

[53]  T. Fischer,et al.  Constraining the onset density of the hadron-quark phase transition with gravitational-wave observations , 2020, Physical Review D.

[54]  K. Chatziioannou Neutron-star tidal deformability and equation-of-state constraints , 2020, General Relativity and Gravitation.

[55]  M. L. Knichel,et al.  Investigation of the p–Σ0 interaction via femtoscopy in pp collisions , 2020, Physics Letters B.

[56]  A. Samajdar,et al.  Interpreting binary neutron star mergers: describing the binary neutron star dynamics, modelling gravitational waveforms, and analyzing detections , 2020, General Relativity and Gravitation.

[57]  K. Hebeler Three-nucleon forces: Implementation and applications to atomic nuclei and dense matter , 2020, Physics Reports.

[58]  J. Haidenbauer,et al.  Hyperon-Nuclear Interactions From SU(3) Chiral Effective Field Theory , 2020, Frontiers in Physics.

[59]  N. Kaiser,et al.  Hyperon–nucleon three-body forces and strangeness in neutron stars , 2020, The European Physical Journal A.

[60]  L. Rezzolla,et al.  Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. , 2019, Physical review letters.

[61]  Keith C. Gendreau,et al.  A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation , 2019, The Astrophysical Journal.

[62]  W. Ho,et al.  PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter , 2019, The Astrophysical Journal.

[63]  Dean Lee,et al.  Improved many-body expansions from eigenvector continuation , 2019, Physical Review C.

[64]  N. Stergioulas,et al.  Empirical relations for gravitational-wave asteroseismology of binary neutron star mergers , 2019, Physical Review D.

[65]  Duncan A. Brown,et al.  Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory , 2019, Nature Astronomy.

[66]  Tim Dietrich,et al.  Modeling the postmerger gravitational wave signal and extracting binary properties from future binary neutron star detections , 2019, Physical Review D.

[67]  I. Vidaña,et al.  Impact of chiral hyperonic three-body forces on neutron stars , 2019, The European Physical Journal A.

[68]  J. Stone,et al.  Equation of state of hot dense hyperonic matter in the Quark–Meson-Coupling (QMC-A) model , 2019 .

[69]  M. L. Knichel,et al.  Study of the Λ–Λ interaction with femtoscopy correlations in pp and p–Pb collisions at the LHC , 2019, 1905.07209.

[70]  Alice Collaboration First Observation of an Attractive Interaction between a Proton and a Cascade Baryon , 2019, Physical Review Letters.

[71]  K. Chatziioannou,et al.  Equation-of-state constraints and the QCD phase transition in the era of gravitational-wave astronomy , 2019, XIAMEN-CUSTIPEN WORKSHOP ON THE EQUATION OF STATE OF DENSE NEUTRON-RICH MATTER IN THE ERA OF GRAVITATIONAL WAVE ASTRONOMY.

[72]  A. Sedrakian,et al.  Cooling of hypernuclear compact stars: Hartree–Fock models and high-density pairing , 2019, Monthly Notices of the Royal Astronomical Society.

[73]  R. Roth,et al.  Similarity renormalization group evolution of hypernuclear Hamiltonians , 2019, Physical Review C.

[74]  A. Schneider,et al.  Akmal-Pandharipande-Ravenhall equation of state for simulations of supernovae, neutron stars, and binary mergers , 2019, Physical Review C.

[75]  L. Rezzolla,et al.  A General-relativistic Determination of the Threshold Mass to Prompt Collapse in Binary Neutron Star Mergers , 2019, The Astrophysical Journal.

[76]  Ulf-G. Meissner,et al.  All the fun of the FAIR: fundamental physics at the facility for antiproton and ion research , 2019, Physica Scripta.

[77]  S. Gandolfi,et al.  Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances , 2019, Annual Review of Nuclear and Particle Science.

[78]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[79]  B. Metzger,et al.  Multimessenger Bayesian parameter inference of a binary neutron star merger , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[80]  K. Chatziioannou,et al.  Observing the post-merger signal of GW170817-like events with improved gravitational-wave detectors , 2018, Physical Review D.

[81]  D. Radice,et al.  Multimessenger parameter estimation of GW170817 , 2018, The European Physical Journal A.

[82]  Hovik Grigorian,et al.  Cooling of neutron stars in “nuclear medium cooling scenario” with stiff equation of state including hyperons , 2018, Nuclear Physics A.

[83]  L. J. Papenfort,et al.  Signatures of Quark-Hadron Phase Transitions in General-Relativistic Neutron-Star Mergers. , 2018, Physical review letters.

[84]  Alice Collaboration,et al.  p−p, p−Λ , and Λ−Λ correlations studied via femtoscopy in pp reactions at s=7TeV , 2018, Physical Review C.

[85]  I. Bombaci,et al.  Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions , 2018, 1805.11846.

[86]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[87]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[88]  G. Burgio,et al.  Nuclear Equation of state for Compact Stars and Supernovae , 2018, 1804.03020.

[89]  À. Ramos,et al.  Cooling of Small and Massive Hyperonic Stars , 2018, The Astrophysical Journal.

[90]  D. Gazda,et al.  Hypernuclear no-core shell model , 2017, Physical Review C.

[91]  A. Sedrakian,et al.  Cooling of hypernuclear compact stars , 2017, 1712.00584.

[92]  C. Providência,et al.  Hyperons in hot dense matter: what do the constraints tell us for equation of state? , 2017, Publications of the Astronomical Society of Australia.

[93]  Sebastiano Bernuzzi,et al.  GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations , 2017, 1711.03647.

[94]  M. Ruiz,et al.  GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. , 2017, Physical review. D..

[95]  L. Rezzolla,et al.  Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars , 2017, 1711.00314.

[96]  T. Littenberg,et al.  Inferring the post-merger gravitational wave emission from binary neutron star coalescences , 2017, 1711.00040.

[97]  Yuichiro Sekiguchi,et al.  Modeling GW170817 based on numerical relativity and its implications , 2017, 1710.07579.

[98]  Hans-Thomas Janka,et al.  Neutron-star Radius Constraints from GW170817 and Future Detections , 2017, 1710.06843.

[99]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[100]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[101]  B. Metzger,et al.  Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817 , 2017, 1710.05938.

[102]  À. Ramos,et al.  The Equation of State for the Nucleonic and Hyperonic Core of Neutron Stars , 2017, Publications of the Astronomical Society of Australia.

[103]  V. Dexheimer Tabulated Neutron Star Equations of State Modelled within the Chiral Mean Field Model , 2017, Publications of the Astronomical Society of Australia.

[104]  H. Nagakura,et al.  A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble , 2017, 1707.06410.

[105]  Caltech,et al.  Open-source nuclear equation of state framework based on the liquid-drop model with Skyrme interaction , 2017, 1707.01527.

[106]  V. Paschalidis,et al.  Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking , 2017, 1707.00207.

[107]  I. Vidaña,et al.  Hypernuclei and massive neutron stars , 2017 .

[108]  M. Marques,et al.  New temperature dependent hyperonic equation of state: Application to rotating neutron star models and I -Q relations , 2017, 1706.02913.

[109]  K. Nakazato,et al.  Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces , 2017, 1702.05324.

[110]  D. Lonardoni Strangeness in nuclei and neutron stars , 2017 .

[111]  C. Ott,et al.  Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants , 2016, 1612.06429.

[112]  J. Font,et al.  Rotational properties of hypermassive neutron stars from binary mergers , 2016, 1611.07152.

[113]  M. Oertel,et al.  Equations of state for supernovae and compact stars , 2016, 1610.03361.

[114]  À. Ramos,et al.  EQUATION OF STATE FOR NUCLEONIC AND HYPERONIC NEUTRON STARS WITH MASS AND RADIUS CONSTRAINTS , 2016, 1610.00919.

[115]  R. De Pietri,et al.  Modeling mergers of known galactic systems of binary neutron stars , 2016, 1608.02810.

[116]  S. Bernuzzi,et al.  Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass-ratio , 2016, 1607.06636.

[117]  D. Alvarez-Castillo,et al.  New class of hybrid EoS and Bayesian M - R data analysis , 2016, 1603.03457.

[118]  C. Providência,et al.  Hyperons in neutron stars and supernova cores , 2016, 1601.00435.

[119]  D. Chatterjee,et al.  Do hyperons exist in the interior of neutron stars? , 2015, 1510.06306.

[120]  I. Vidaña Hyperons in Neutron Stars , 2015, 1509.03587.

[121]  A. Drago,et al.  The scenario of two families of compact stars , 2015, 1509.02131.

[122]  J. Menendez,et al.  Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter , 2015, 1508.06893.

[123]  Hans-Thomas Janka,et al.  Exploring properties of high-density matter through remnants of neutron-star mergers , 2015, 1508.05493.

[124]  S. Typel,et al.  CompOSE CompStar online supernova equations of state harmonising the concert of nuclear physics and astrophysics compose.obspm.fr , 2015, Physics of Particles and Nuclei.

[125]  J. Lattimer,et al.  Thermal properties of hot and dense matter with finite range interactions , 2015, 1504.03982.

[126]  D. Voskresensky,et al.  Solution of the hyperon puzzle within a relativistic mean-field model , 2015, 1504.02915.

[127]  S. Bernuzzi,et al.  Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers. , 2015, Physical review letters.

[128]  L. Baiotti,et al.  Spectral properties of the post-merger gravitational-wave signal from binary neutron stars , 2014, 1412.3240.

[129]  G. S. Averichev,et al.  ΛΛ Correlation function in Au+Au collisions at √[S(NN)]=200  GeV. , 2014, Physical review letters.

[130]  S. Gandolfi,et al.  Hyperon puzzle: hints from quantum Monte Carlo calculations. , 2014, Physical review letters.

[131]  C. Pankow,et al.  Prospects For High Frequency Burst Searches Following Binary Neutron Star Coalescence With Advanced Gravitational Wave Detectors , 2014, 1406.5444.

[132]  Y. Yamamoto,et al.  Hyperon mixing and universal many-body repulsion in neutron stars , 2014, 1406.4332.

[133]  B. Erazmus,et al.  EXTRACTING P Λ SCATTERING LENGTHS FROM HEAVY ION COLLISIONS , 2014, 1405.3594.

[134]  M. Hempel,et al.  NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY , 2014, 1404.6173.

[135]  S. Banik Probing the metastability of a protoneutron star with hyperons in a core-collapse supernova , 2014, 1401.0369.

[136]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[137]  P. Haensel,et al.  Maximum mass of neutron stars and strange neutron-star cores , 2012, 1211.1231.

[138]  J. Novak,et al.  Influence of pions and hyperons on stellar black hole formation , 2012, 1210.7435.

[139]  T. Fischer,et al.  CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS , 2012, 1207.2184.

[140]  Columbus,et al.  Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers , 2012, 1204.1888.

[141]  T. Damour,et al.  Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals , 2012, 1203.4352.

[142]  D. Chatterjee,et al.  Hyperons and massive neutron stars: Vector repulsion and SU(3) symmetry , 2011, 1112.0234.

[143]  A. Ohnishi,et al.  HYPERON MATTER AND BLACK HOLE FORMATION IN FAILED SUPERNOVAE , 2011, 1111.2900.

[144]  M. Shibata,et al.  Effects of hyperons in binary neutron star mergers. , 2011, Physical review letters.

[145]  A. Sedrakian,et al.  Composition and stability of hybrid stars with hyperons and quark color-superconductivity , 2011, 1108.0559.

[146]  K. Hotokezaka,et al.  Binary neutron star mergers: Dependence on the nuclear equation of state , 2011, 1105.4370.

[147]  C. Horowitz,et al.  New equation of state for astrophysical simulations , 2011, 1101.3715.

[148]  H. Janka,et al.  Testing approximations of thermal effects in neutron star merger simulations , 2010, 1006.3315.

[149]  T. Damour,et al.  Effective one body description of tidal effects in inspiralling compact binaries , 2009, 0911.5041.

[150]  J. Schaffner-Bielich,et al.  A statistical model for a complete supernova equation of state , 2009, 0911.4073.

[151]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[152]  H. Janka,et al.  Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements , 2009, 0910.5169.

[153]  S. Typel,et al.  Composition and thermodynamics of nuclear matter with light clusters , 2009, 0908.2344.

[154]  B. Lackey,et al.  Constraints on a phenomenologically parametrized neutron-star equation of state , 2008, 0812.2163.

[155]  A. Ohnishi,et al.  EMERGENCE OF HYPERONS IN FAILED SUPERNOVAE: TRIGGER OF THE BLACK HOLE FORMATION , 2008, 0811.4237.

[156]  T. Takatsuka,et al.  Three-Body Force as an "Extra Repulsion" Suggested from Hyperon-Mixed Neutron Stars(Dense QCD Matter,New Frontiers in QCD 2008-Fundamental Problems in Hot and/or Dense Matter-) , 2008 .

[157]  T. Hinderer Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.

[158]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[159]  A. Marek,et al.  Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state , 2006, astro-ph/0611047.

[160]  B. Lackey,et al.  Observational constraints on hyperons in neutron stars , 2005, astro-ph/0507312.

[161]  P. Ring,et al.  New relativistic mean-field interaction with density-dependent meson-nucleon couplings , 2005 .

[162]  J. Lattimer,et al.  Minimal Cooling of Neutron Stars: A New Paradigm , 2004, astro-ph/0403657.

[163]  C. Pethick,et al.  Neutron Star Cooling , 2004, astro-ph/0409751.

[164]  S. Rosswog,et al.  Conformally flat Smoothed Particle Hydrodynamics Application to Neutron Star Mergers , 2001, gr-qc/0111005.

[165]  H. Toki,et al.  Relativistic equation of state of nuclear matter for supernova explosion , 1998 .

[166]  Hong Shen,et al.  Relativistic equation of state of nuclear matter for supernova and neutron star , 1998 .

[167]  H.Shen,et al.  Relativistic Equation of State of Nuclear Matter for Supernova and Neutron Star , 1998, nucl-th/9805035.

[168]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[169]  Mathews,et al.  Relativistic numerical model for close neutron-star binaries. , 1996, Physical review. D, Particles and fields.

[170]  H. Toki,et al.  Relativistic many body approach for unstable nuclei and supernova , 1995 .

[171]  H. Janka,et al.  Does artificial viscosity destroy prompt type-II supernova explosions? , 1993 .

[172]  J. Lattimer,et al.  Rapid cooling of neutron stars by hyperons and Delta isobars , 1992 .

[173]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .

[174]  N. Glendenning,et al.  Neutron Stars Are Giant Hypernuclei , 1985 .

[175]  J. Haidenbauer,et al.  2022 Ab initio calculation of charge symmetry breaking in A = 7 and 8 Λ -hypernuclei , 2022 .

[176]  P. R. Metidieri INTERPLAY BETWEEN ∆ PARTICLES AND HYPERONS IN NEUTRON STARS , 2018 .

[177]  R. Znajek,et al.  General relativity and gravitation : one hundred years after the birth of Albert Einstein , 1980 .

[178]  C. Taille,et al.  Measurement of differential cross sections for Σ+p elastic scattering in the momentum range 0.44–0.80 GeV/c , 2022, Progress of Theoretical and Experimental Physics.

[179]  I. Miyazaki,et al.  AND T , 2022 .