Stability of Multiclass Queueing Networks Under

In this paper, we establish a sufficient condition for the stability of a multiclass fluid network and queueing network under priority service disciplines. The sufficient condition is based on the existence of a linear Lyapunov function, and it is stated in terms of the feasibility of a set of linear inequalities that are defined by network parameters. In all the networks we have tested, this sufficient condition actually gives a necessary and sufficient condition for their stability.

[1]  J. BANKS,et al.  Simulation studies of multiclass queueing networks , 1997 .

[2]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[3]  P. Glasserman,et al.  Stochastic networks : stability and rare events , 1997 .

[4]  Sean P. Meyn,et al.  Piecewise linear test functions for stability of queueing networks , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[5]  S. Fotopoulos Stochastic modeling and analysis of manufacturing systems , 1996 .

[6]  Robert B. Cooper,et al.  Queueing systems, volume II: computer applications : By Leonard Kleinrock. Wiley-Interscience, New York, 1976, xx + 549 pp. , 1977 .

[7]  J. Dai A fluid limit model criterion for instability of multiclass queueing networks , 1996 .

[8]  Sean P. Meyn,et al.  Stability of queueing networks and scheduling policies , 1995, IEEE Trans. Autom. Control..

[9]  J. Ben Atkinson,et al.  An Introduction to Queueing Networks , 1988 .

[10]  Hong Chen,et al.  Stability of Multiclass Queueing Networks Under FIFO Service Discipline , 1997, Math. Oper. Res..

[11]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[12]  P. R. Kumar,et al.  Distributed scheduling based on due dates and buffer priorities , 1991 .

[13]  H. Chen A sufficient condition for the positive recurrence of a semimartingale reflecting Brownian motion in an orthant , 1996 .

[14]  J. Dai On Positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models , 1995 .

[15]  G. J. A. Stern,et al.  Queueing Systems, Volume 2: Computer Applications , 1976 .

[16]  M. Bramson Instability of FIFO Queueing Networks with Quick Service Times , 1994 .

[17]  Gideon Weiss,et al.  Stability and Instability of Fluid Models for Reentrant Lines , 1996, Math. Oper. Res..

[18]  Ann Appl,et al.  On the Positive Harris Recurrence for Multiclass Queueing Networks: a Uniied Approach via Uid Limit Models , 1999 .

[19]  John J. Hasenbein,et al.  Necessary conditions for global stability of multiclass queueing networks , 1997, Oper. Res. Lett..

[20]  Gil I. Winograd,et al.  The FCFS Service Discipline: Stable Network Topologies, Bounds on Traffic Burstiness and Delay, and , 1996 .

[21]  Vincent Dumas,et al.  A multiclass network with non-linear, non-convex, non-monotonic stability conditions , 1997, Queueing Syst. Theory Appl..

[22]  Sean P. Meyn,et al.  Stability and convergence of moments for multiclass queueing networks via fluid limit models , 1995, IEEE Trans. Autom. Control..

[23]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[24]  P. R. Kumar,et al.  Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[25]  David D. Yao,et al.  Stable Priority Disciplines for Multiclass Networks , 1996 .

[26]  G. Dai A Fluid-limit Model Criterion for Instability of Multiclass Queueing Networks , 1996 .

[27]  Hong Chen Fluid Approximations and Stability of Multiclass Queueing Networks: Work-Conserving Disciplines , 1995 .

[28]  D. Botvich,et al.  Ergodicity of conservative communication networks , 1994 .

[29]  Ruth J. Williams,et al.  Lyapunov Functions for Semimartingale Reflecting Brownian Motions , 1994 .

[30]  M. Bramson Instability of FIFO Queueing Networks , 1994 .

[31]  Guy Pujolle,et al.  Introduction to queueing networks , 1987 .

[32]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[33]  Sean P. Meyn Transience of Multiclass Queueing Networks Via Fluid Limit Models , 1995 .

[34]  Maury Bramson,et al.  Convergence to equilibria for fluid models of FIFO queueing networks , 1996, Queueing Syst. Theory Appl..

[35]  Sean P. Meyn,et al.  Stability of queueing networks and scheduling policies , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[36]  Thomas I. Seidman,et al.  "First come, first served" can be unstable! , 1994, IEEE Trans. Autom. Control..