The physics of symbols: bridging the epistemic cut.

Evolution requires the genotype-phenotype distinction, a primeval epistemic cut that separates energy-degenerate, rate-independent genetic symbols from the rate-dependent dynamics of construction that they control. This symbol-matter or subject-object distinction occurs at all higher levels where symbols are related to a referent by an arbitrary code. The converse of control is measurement in which a rate-dependent dynamical state is coded into quiescent symbols. Non-integrable constraints are one necessary condition for bridging the epistemic cut by measurement, control, and coding. Additional properties of heteropolymer constraints are necessary for biological evolution.

[1]  Philip W. Anderson Is measurement itself an emergent property , 1997 .

[2]  Jonathan Shear Explaining consciousness : The hard problem , 1997 .

[3]  J. Haldane Possible Worlds, and other Essays , 1928, Nature.

[4]  Mayr,et al.  This is Biology , 1998 .

[5]  E. Cassirer,et al.  The Philosophy of Symbolic Forms , 2021 .

[6]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[7]  Robert Rosen,et al.  On the scope of syntactics in mathematics and science: the machine metaphor , 1987 .

[8]  Charles E. Taylor,et al.  Artificial Life II , 1991 .

[9]  M. Born,et al.  Physics in My Generation , 1969 .

[10]  Claus Emmeche,et al.  The Garden in the Machine , 1994 .

[11]  G. Cowan,et al.  Complexity Metaphors, Models, and Reality , 1994 .

[12]  The phenomenology of knowledge , 1957 .

[13]  H H Pattee,et al.  Quantum mechanics, heredity and the origin of life. , 1967, Journal of Theoretical Biology.

[14]  M. Conrad The geometry of evolution. , 1990, Bio Systems.

[15]  N. Bohr Light and Life , 1933, Nature.

[16]  C. Emmeche,et al.  Code-duality and the semiotics of nature , 1991 .

[17]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[18]  Floyd Merrell,et al.  On Semiotic Modeling , 1991 .

[19]  H. Pattee On the origin of macromolecular sequences. , 1961, Biophysical Journal.

[20]  J. Sutherland The Quark and the Jaguar , 1994 .

[21]  K. Pearson “The Grammar of Science” , 1900, Nature.

[22]  Piero Mussio,et al.  Toward a Practice of Autonomous Systems , 1994 .

[23]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[24]  P. Anderson More is different. , 1972, Science.

[25]  J. W. Humberston Classical mechanics , 1980, Nature.

[26]  Symbol and Reality , 1966 .

[27]  Kalevi Kull,et al.  On semiosis, Umwelt, and semiosphere , 1998 .

[28]  G. Stent,et al.  Phage and the Origins of Molecular Biology , 1966 .

[29]  P Bourgine,et al.  Towards a Practice of Autonomous Systems , 1992 .

[30]  Rodney A. Brooks,et al.  Artificial Life and Real Robots , 1992 .

[31]  M. Grene The Knower and the Known , 1966 .

[32]  Michael Danos,et al.  The Mathematical Foundations of Quantum Mechanics , 1964 .

[33]  M. Polanyi Life's irreducible structure. Live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them. , 1968, Science.

[34]  A. Pickering Constructing Quarks: A Sociological History of Particle Physics , 1985 .

[35]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[36]  M. Conrad,et al.  Evolution experiments with an artificial ecosystem. , 1970, Journal of theoretical biology.

[37]  Peter G. Wolynes,et al.  Biomolecules: Where the Physics of Complexity and Simplicity Meet , 1994 .

[38]  H. Weyl,et al.  Philosophy of Mathematics and Natural Science , 1950 .

[39]  John L. Casti,et al.  Real brains: artificial minds , 1987 .

[40]  C. H. WADDINGTON,et al.  Towards a Theoretical Biology , 1968, Nature.

[41]  John G. Taylor The race for consciousness , 1999 .

[42]  R. Eden,et al.  The quantum mechanics of non-holonomic systems , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  E. Wigner Events, Laws of Nature, and Invariance Principles. , 1964, Science.