Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires.

We explore the effect of re-radiation in surface-enhanced Raman scattering (SERS) through polarization-sensitive experiments on self-organized gold nanowires on which randomly oriented Methylene Blue molecules are adsorbed. We provide the exact laws ruling the polarized, unpolarized, and parallel- and cross-polarized SERS intensity as a function of the field polarizations. We show that SERS is polarized along the wire-to-wire nanocavity axis, independently from the excitation polarization. This proves the selective enhancement of the Raman dipole component parallel to the nanocavity at the single molecule level. Introducing a field enhancement tensor to account for the anisotropic polarization response of the nanowires, we work out a model that correctly predicts the experimental results for any excitation/detection polarization and goes beyond the E(4) approximation. We also show how polarization-sensitive SERS experiments permit one to evaluate independently the excitation and the re-radiation enhancement factors accessing the orientation-averaged non-diagonal components of the molecular Raman polarizability tensor.

[1]  A. Toma,et al.  Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality , 2010 .

[2]  S. B. Chaney,et al.  Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. , 2006, The journal of physical chemistry. B.

[3]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[4]  A. Toma,et al.  Carbon monoxide dissociation on Rh nanopyramids. , 2006, Physical review letters.

[5]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[6]  J. Rubim,et al.  Surface-Enhanced Resonance Raman (SERR) Spectra of Methylene Blue Adsorbed on a Silver Electrode , 2003 .

[7]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[8]  F. Mongeot,et al.  Nanostructuring by ion beam , 2003 .

[9]  Pierre-Michel Adam,et al.  Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement , 2006 .

[10]  T. Michely,et al.  The STM view of the initial stages of polycrystalline Ag film formation , 2007 .

[11]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[12]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[13]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[14]  J. Aizpurua,et al.  Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. , 2010, Nano letters.

[15]  D. Barchiesi,et al.  Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy , 2008, Nanotechnology.

[16]  Hongxing Xu,et al.  Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[18]  George C. Schatz,et al.  Electromagnetic mechanism of SERS , 2006 .

[19]  Jeremy J. Baumberg,et al.  Understanding the Surface-Enhanced Raman Spectroscopy 'Background' , 2010 .

[20]  Emmanuel Rinnert,et al.  Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength , 2010 .

[21]  M. Jenko,et al.  Patterning polycrystalline thin films by defocused ion beam: The influence of initial morphology on the evolution of self-organized nanostructures , 2008 .

[22]  T. Kang,et al.  Simple vapor-phase synthesis of single-crystalline ag nanowires and single-nanowire surface-enhanced Raman scattering. , 2007, Journal of the American Chemical Society.

[23]  M. Jenko,et al.  Erosive versus shadowing instabilities in the self-organized ion patterning of polycrystalline metal films , 2008 .

[24]  P. Etchegoin,et al.  Polarization-dependent effects in surface-enhanced Raman scattering (SERS). , 2006, Physical chemistry chemical physics : PCCP.

[25]  Jean Aubard,et al.  Experimental Verification of the SERS Electromagnetic Model beyond the |E|4 Approximation: Polarization Effects , 2008 .

[26]  Yiping Zhao,et al.  Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. , 2006, Nano letters.

[27]  Yingzhou Huang,et al.  Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. , 2008, Nano letters.

[28]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[29]  Jean Aubard,et al.  Surface enhanced Raman spectroscopy on nanolithography-prepared substrates , 2008 .

[30]  Chad A. Mirkin,et al.  Designing, fabricating, and imaging Raman hot spots , 2006, Proceedings of the National Academy of Sciences.

[31]  Tian Ming,et al.  Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. , 2009, Nano letters.

[32]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[33]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[34]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[35]  H. Metiu Surface enhanced spectroscopy , 1984 .

[36]  Pablo G. Etchegoin,et al.  Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy☆ , 2006 .

[37]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[38]  M. J. Rost,et al.  Grains, growth, and grooving. , 2003, Physical review letters.

[39]  N. Tognalli,et al.  Exploring three-dimensional nanosystems with Raman spectroscopy: methylene blue adsorbed on thiol and sulfur monolayers on gold. , 2006, The journal of physical chemistry. B.

[40]  Alexandre G. Brolo,et al.  The Use of Polarization-dependent SERS from Scratched Gold Films to Selectively Eliminate Solution-phase Interference , 2007 .

[41]  M. Moskovits,et al.  Surface-enhanced raman scattering : physics and applications , 2006 .

[42]  Franz R. Aussenegg,et al.  Evidence of multipolar excitations in surface enhanced Raman scattering , 2005 .

[43]  G. Turrell,et al.  Analysis of polarization measurements in Raman microspectroscopy , 1984 .

[44]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[45]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[46]  Derek A. Long,et al.  The Raman Effect , 2002 .

[47]  Yingzhou Huang,et al.  Correlation between incident and emission polarization in nanowire surface plasmon waveguides. , 2010, Nano letters.

[48]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[49]  J. M. Baik,et al.  Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires. , 2009, Nano letters.

[50]  V. Kravets,et al.  Surface Enhanced Raman Spectroscopy of Graphene , 2010, 1005.3268.

[51]  Yingzhou Huang,et al.  Directional light emission from propagating surface plasmons of silver nanowires. , 2009, Nano letters.

[52]  Alexander Wokaun,et al.  Surface-Enhanced Electromagnetic Processes , 1984 .

[53]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[54]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[55]  Yiping Zhao,et al.  Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate , 2006 .

[56]  M. Moskovits,et al.  Polarized Surface Enhanced Raman Scattering from Aligned Silver Nanowire Rafts , 2004 .

[57]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[58]  M. L. D. L. Chapelle,et al.  Light depolarization induced by sharp metallic tips and effects on Tip-Enhanced Raman Spectroscopy , 2008 .

[59]  R. Ossikovski,et al.  Depolarization effects in tip-enhanced Raman spectroscopy , 2009 .

[60]  Andrea R Tao,et al.  Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires. , 2005, The journal of physical chemistry. B.

[61]  Eric C. Le Ru,et al.  A quick overview of surface-enhanced Raman spectroscopy , 2009 .

[62]  T. Shegai,et al.  Probing the Raman scattering tensors of individual molecules. , 2006, The journal of physical chemistry. B.

[63]  Hongxing Xu,et al.  Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. , 2009, ACS nano.

[64]  Louis E. Brus,et al.  Fluctuations and Local Symmetry in Single-Molecule Rhodamine 6G Raman Scattering on Silver Nanocrystal Aggregates † , 2002 .

[65]  P. Etchegoin,et al.  Advanced aspects of electromagnetic SERS enhancement factors at a hot spot , 2008 .

[66]  B. Vermang,et al.  CO adsorption on Ce − Pt ( 111 ) studied with LEED, XPS, and temperature programmed desorption , 2006 .

[67]  A. Brolo,et al.  Strong polarized enhanced raman scattering via optical tunneling through random parallel nanostructures in Au thin films. , 2005, The journal of physical chemistry. B.

[68]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[69]  Martin Moskovits,et al.  Surface-Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS , 2007 .

[70]  Hideki Nabika,et al.  Polarization characteristics of surface-enhanced Raman scattering from a small number of molecules at the gap of a metal nano-dimer. , 2011, Chemical communications.

[71]  Hongxing Xu,et al.  Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer , 2008, Proceedings of the National Academy of Sciences.

[72]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .