Nanopore force spectroscopy tools for analyzing single biomolecular complexes.

The time-dependent response of individual biomolecular complexes to an applied force can reveal their mechanical properties, interactions with other biomolecules, and self-interactions. In the past decade, a number of single-molecule methods have been developed and applied to a broad range of biological systems, such as nucleic acid complexes, enzymes and proteins in the skeletal and cardiac muscle sarcomere. Nanopore force spectroscopy (NFS) is an emerging single-molecule method, which takes advantage of the native electrical charge of biomolecule to exert a localized bond-rupture force and measure the biomolecule response. Here, we review the basic principles of the method and discuss two bond breakage modes utilizing either a fixed voltage or a steady voltage ramp. We describe a unified theoretical formalism to extract kinetic information from the NFS data, and illustrate the utility of this formalism by analyzing data from nanopore unzipping of individual DNA hairpin molecules, where the two bond breakage modes were applied.

[1]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[2]  R. Merkel,et al.  Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy , 1999, Nature.

[3]  Kirsten L. Frieda,et al.  Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers , 2008, Science.

[4]  Marc Gershow,et al.  Recapturing and trapping single molecules with a solid-state nanopore. , 2007, Nature nanotechnology.

[5]  Gerhard Hummer,et al.  Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. , 2007, Biophysical journal.

[6]  G. Hummer,et al.  Theory, analysis, and interpretation of single-molecule force spectroscopy experiments , 2008, Proceedings of the National Academy of Sciences.

[7]  U. Bockelmann,et al.  Theoretical study of sequence-dependent nanopore unzipping of DNA. , 2008, Biophysical journal.

[8]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[9]  M. Rief,et al.  Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape. , 2006, Biophysical journal.

[10]  Juhyoun Kwak,et al.  Ion-beam sculpting at nanometre length scales , 2001 .

[11]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[12]  D. Branton,et al.  Unzipping kinetics of double-stranded DNA in a nanopore. , 2002, Physical review letters.

[13]  C. Dekker,et al.  Translocation of RecA-coated double-stranded DNA through solid-state nanopores. , 2009, Nano letters.

[14]  Klaus Schulten,et al.  Mechanical unfolding intermediates in titin modules , 1999, Nature.

[15]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[16]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[17]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[18]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[19]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Dekker,et al.  Translocation of double-strand DNA through a silicon oxide nanopore. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  H. Bayley,et al.  Stochastic detection of enantiomers. , 2006, Journal of the American Chemical Society.

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  D. Deamer,et al.  Structure and dynamics of confined polymers , 2002 .

[24]  Carlos Bustamante,et al.  Direct Observation of the Three-State Folding of a Single Protein Molecule , 2005, Science.

[25]  J. Liphardt,et al.  Reversible Unfolding of Single RNA Molecules by Mechanical Force , 2001, Science.

[26]  Mark Bates,et al.  Dynamics of DNA molecules in a membrane channel probed by active control techniques. , 2003, Biophysical journal.

[27]  D. Branton,et al.  Voltage-driven DNA translocations through a nanopore. , 2001, Physical review letters.

[28]  Paul R. Selvin,et al.  Single-molecule techniques : a laboratory manual , 2008 .

[29]  Mark Akeson,et al.  Single-molecule analysis of DNA-protein complexes using nanopores , 2007, Nature Methods.

[30]  A. Meller,et al.  DNA profiling using solid-state nanopores: detection of DNA-binding molecules. , 2009, Nano letters.

[31]  A. Meller,et al.  Nanopore unzipping of individual DNA hairpin molecules. , 2004, Biophysical journal.

[32]  A. Meller,et al.  Equilibrium and irreversible unzipping of DNA in a nanopore , 2006 .

[33]  Gerhard Hummer,et al.  Intrinsic rates and activation free energies from single-molecule pulling experiments. , 2006, Physical review letters.

[34]  A. Meller,et al.  Self-energy-limited ion transport in subnanometer channels. , 2006, Physical review letters.

[35]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[36]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[37]  Hongbin Li,et al.  The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Meni Wanunu,et al.  Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. , 2008, Nano letters.

[39]  A. Meller,et al.  Dynamics of polynucleotide transport through nanometre-scale pores , 2003 .

[40]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[42]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[43]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[44]  Marc Gershow,et al.  Detecting single stranded DNA with a solid state nanopore. , 2005, Nano letters.