AGGREGATION OF PREDICTORS FOR NON STATIONARY SUB-LINEAR PROCESSES AND ONLINE ADAPTIVE FORECASTING OF TIME VARYING AUTOREGRESSIVE PROCESSES
暂无分享,去创建一个
Franccois Roueff | Christophe Giraud | Andres Sanchez-Perez | C. Giraud | F. Roueff | Andrés Sánchez-Pérez
[1] Vladimir Vovk,et al. Aggregating strategies , 1990, COLT '90.
[2] P. Priouret,et al. On recursive estimation for time varying autoregressive processes , 2005, math/0603047.
[3] R. Dahlhaus. On the Kullback-Leibler information divergence of locally stationary processes , 1996 .
[4] Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation , 2007, math/0703854.
[5] Sébastien Gerchinovitz. Prediction of individual sequences and prediction in the statistical framework : some links around sparse regression and aggregation techniques , 2011 .
[6] H. Tong,et al. Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .
[7] Arnak S. Dalalyan,et al. Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity , 2008, Machine Learning.
[8] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[9] Gábor Lugosi,et al. Prediction, learning, and games , 2006 .
[10] P. Doukhan,et al. WEAKLY DEPENDENT CHAINS WITH INFINITE MEMORY , 2007, 0712.3231.
[11] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[12] Shie Mannor,et al. Online Learning for Time Series Prediction , 2013, COLT.
[13] A. Juditsky,et al. Functional aggregation for nonparametric regression , 2000 .
[14] R. Dahlhaus,et al. Empirical spectral processes for locally stationary time series , 2009, 0902.1448.
[15] Yuhong Yang. COMBINING FORECASTING PROCEDURES: SOME THEORETICAL RESULTS , 2004, Econometric Theory.
[16] R. Dahlhaus. Local inference for locally stationary time series based on the empirical spectral measure , 2009 .
[17] Pierre Alquier,et al. Model selection for weakly dependent time series forecasting , 2009, 0902.2924.
[18] O. Lepskii. On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .
[19] Yuhong Yang,et al. Adaptive minimax regression estimation over sparse lq-hulls , 2014, J. Mach. Learn. Res..
[20] Andrew R. Barron,et al. Information Theory and Mixing Least-Squares Regressions , 2006, IEEE Transactions on Information Theory.
[21] A. Tsybakov,et al. Sparse Estimation by Exponential Weighting , 2011, 1108.5116.
[22] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[23] J. Doob. Stochastic processes , 1953 .
[24] Yuhong Yang. Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.
[25] R. Dahlhaus,et al. On the Optimal Segment Length for Parameter Estimates for Locally Stationary Time Series , 1998 .
[26] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[27] R. Dahlhaus,et al. Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes , 2006, 0708.0143.
[28] Ouerdia Arkoun. Sequential Adaptive Estimators in Nonparametric Autoregressive Models , 2010, 1004.5199.
[29] Yves Grenier,et al. Time-dependent ARMA modeling of nonstationary signals , 1983 .
[30] Alessio Sancetta. RECURSIVE FORECAST COMBINATION FOR DEPENDENT HETEROGENEOUS DATA , 2009, Econometric Theory.
[31] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[32] A. V. D. Vaart,et al. Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .
[33] Yuhong Yang. Mixing Strategies for Density Estimation , 2000 .
[34] O. Catoni. The Mixture Approach to Universal Model Selection , 1997 .