Cell Surface Receptors

The genetic code embodies structural and functional potentialities and in differentiated cells the DNA is analogous to a punch tape that has become programmed, by largely unresolved mechanisms, to delineate the cells’ specialised activity. However, in order for this specific potential to be expressed in tune with the dynamic demands of the environment, the biochemical pathways from gene to performance must be in contact with, and receptive to, extracellular signals.

[1]  P. A. Peterson,et al.  Evolutionary relationship between immunoglobulins and transplantation antigens. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[2]  W. E. van Heyningen,et al.  Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. , 1973, The Journal of infectious diseases.

[3]  L. Lawrence,et al.  Molecular complementarity of yeast glycoprotein mating factors. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Hendrickson,et al.  Structural interactions of fibroblast growth factor receptor with its ligands. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Hunt,et al.  Chapter 7 Neuronal Specificity Revisited , 1974 .

[6]  O. Pertz,et al.  A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E‐cadherin homoassociation , 1999, The EMBO journal.

[7]  P. Weiss The Problem of Specificity in Growth and Development * , 1947, The Yale journal of biology and medicine.

[8]  P. Barton,et al.  Crystal structure of the human leukocyte Fc receptor, FcγRIIa. , 1999, Nature Structural Biology.

[9]  C. Bernard Medical Classic. (Book Reviews: An Introduction to the Study of Experimental Medicine) , 1957 .

[10]  Jeffrey W. Roberts,et al.  遺伝子の分子生物学 = Molecular biology of the gene , 1970 .

[11]  F. Burnet A Certain Symmetry : Histocompatibility Antigens compared with Immunocyte Receptors , 1970, Nature.

[12]  H. V. Wilson On some phenomena of coalescence and regeneration in sponges , 1907 .

[13]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[14]  A. Porter,et al.  Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis , 1998, Oncogene.

[15]  K. Landsteiner,et al.  The Specificity of Serological Reactions , 1936, The Indian Medical Gazette.

[16]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[17]  D. Koshland,et al.  The catalytic and regulatory properties of enzymes. , 1968, Annual review of biochemistry.

[18]  A. Aszódi,et al.  Functional consequences of integrin gene mutations in mice. , 2001, Circulation research.

[19]  J. Feeney,et al.  Binding of flexible ligands to macromolecules , 1975, Nature.

[20]  H. Tamar Principles of sensory physiology , 1972 .

[21]  W. H. Miller,et al.  Cyclic Adenosine Monophosphate: Function in Photoreceptors , 1971, Science.

[22]  I. Wilson,et al.  Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. , 1999, Science.

[23]  Robert M. Stroud,et al.  Efficiency of signalling through cytokine receptors depends critically on receptor orientation , 1998, Nature.

[24]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[25]  H. Mcdevitt,et al.  Histocompatibility-linked immune response genes. , 1972, Science.

[26]  Peter D. Kwong,et al.  Structural basis of cell-cell adhesion by cadherins , 1995, Nature.

[27]  P. Stewart,et al.  Structure of Adenovirus Complexed with Its Internalization Receptor, αvβ5 Integrin , 1999, Journal of Virology.

[28]  D I Stuart,et al.  Structure and dimerization of a soluble form of B7-1. , 2000, Immunity.

[29]  J. Holmgren,et al.  Fixation and inactivation of cholera toxin by GM1 ganglioside. , 1973, Scandinavian journal of infectious diseases.

[30]  S. Harrison,et al.  Crystal structure of the ectodomain of human transferrin receptor. , 1999, Science.

[31]  I. Wilson,et al.  The structure, organization, activation and plasticity of the erythropoietin receptor. , 1999, Current opinion in structural biology.

[32]  M. Rossmann,et al.  The structure of the two amino-terminal domains of human intercellular adhesion molecule-1 suggests how it functions as a rhinovirus receptor. , 1999, Virus research.

[33]  D. Nikolov,et al.  Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2 , 1998, Nature.

[34]  L. Jan,et al.  Molecular Basis for Interactions of G Protein βγ Subunits with Effectors , 1998 .

[35]  Charles Eigenbrot,et al.  Crystal Structure at 1.7 Å Resolution of VEGF in Complex with Domain 2 of the Flt-1 Receptor , 1997, Cell.

[36]  R. McLean,et al.  Cell-cell interactions: enhancement of glycosyl transferase ectoenzyme systems during Chlamydomonas gametic contact. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Moscona Analysis of cell recombinations in experimental synthesis of tissues in vitro , 1962 .

[38]  I. Pastan,et al.  Cyclic AMP in Metobolism , 1971 .

[39]  R. Fässler,et al.  Consequences of lack of beta 1 integrin gene expression in mice. , 1995, Genes & development.

[40]  M. Simon,et al.  Receptor Tyrosine Kinases Specific Outcomes from General Signals , 2000, Cell.

[41]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[42]  R. M. Gaze The formation of nerve connections , 1970 .

[43]  F. Haurowitz THE MECHANISM OF THE IMMUNOLOGICAL RESPONSE , 1952, Reumatologia.

[44]  J N Langley,et al.  On the Physiology of the Salivary Secretion , 1878, The Journal of physiology.

[45]  W. Bodmer,et al.  Evolutionary Significance of the HL-A System , 1972, Nature.

[46]  A. D. de Vos,et al.  Hematopoietic receptor complexes. , 1996, Annual review of biochemistry.

[47]  U. Jacob,et al.  Crystal structure of the soluble form of the human Fcγ‐receptor IIb: a new member of the immunoglobulin superfamily at 1.7 Å resolution , 1999, The EMBO journal.

[48]  M. Sheng,et al.  Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. , 2000, Annual review of physiology.

[49]  N. Mckern,et al.  Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor , 1998, Nature.

[50]  M. Ikura,et al.  Structural basis of calcium-induced E-cadherin rigidification and dimerization , 1996, Nature.

[51]  David I. Stuart,et al.  Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2 , 1992, Nature.

[52]  S. Roth A Molecular Model for Cell Interactions , 1973, The Quarterly Review of Biology.

[53]  K. Artzt,et al.  Analogies between embryonic (T/t) antigens and adult major histocompatibility (H-2) antigens , 1975, Nature.

[54]  P. Cuatrecasas Interaction of Vibrio cholerae enterotoxin with cell membranes. , 1973, Biochemistry.

[55]  Gerhard Wagner,et al.  Structure of a Heterophilic Adhesion Complex between the Human CD2 and CD58 (LFA-3) Counterreceptors , 1999, Cell.

[56]  Ronald W. Barrett,et al.  A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist , 1997, Nature.

[57]  J. Lederberg,et al.  REPLICA PLATING AND INDIRECT SELECTION OF BACTERIAL MUTANTS , 1952, Journal of bacteriology.

[58]  B. Brandhuber,et al.  Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1β , 1997, Nature.

[59]  R. Bradshaw,et al.  Interaction of nerve growth factor with surface membranes: biological competence of insolubilized nerve growth factor. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D. Banner,et al.  Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: Implications for TNF receptor activation , 1993, Cell.

[61]  C. Michener,et al.  Were workers of eusocial hymenoptera initially altruistic or oppressed? , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8-A resolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. Yip,et al.  Quaternary structure of the insulin-insulin receptor complex. , 1999, Science.

[64]  H. Rang Drug Receptors and their Function , 1971, Nature.

[65]  B. Oh,et al.  2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. , 1999, Immunity.

[66]  Jacques Monod,et al.  Chance and Necessity , 1970 .

[67]  J. Deisenhofer,et al.  Regulation of LNS Domain Function by Alternative Splicing: The Structure of the Ligand-Binding Domain of Neurexin Iβ , 1999, Cell.

[68]  R. King,et al.  Steroid-cell interactions , 1974 .

[69]  P. Reinemer,et al.  Crystal Structure of the Interleukin-4/Receptor α Chain Complex Reveals a Mosaic Binding Interface , 1999, Cell.

[70]  E Y Jones,et al.  MHC superfamily structure and the immune system. , 1999, Current opinion in structural biology.

[71]  William Rowan,et al.  The Study of Instinct , 1953 .

[72]  N. Skelton,et al.  Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. , 1999, Structure.

[73]  J. Kinet,et al.  Crystal Structure of the Human High-Affinity IgE Receptor , 1998, Cell.

[74]  P. Bjorkman,et al.  Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor , 2000, Nature.

[75]  D. Stuart,et al.  Crystal structure of the human p58 killer cell inhibitory receptor (KIR2DL3) specific for HLA-Cw3-related MHC class I. , 1999, Structure.

[76]  E. Reinherz,et al.  Functional glycan‐free adhesion domain of human cell surface receptor CD58: design, production and NMR studies , 1999, The EMBO journal.

[77]  V. Berezin,et al.  Structure and interactions of NCAM modules 1 and 2, basic elements in neural cell adhesion , 1999, Nature Structural Biology.

[78]  R. Timpl,et al.  The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. , 1999, Molecular cell.

[79]  J. Zabriskie,et al.  Mimetic relationships between group A streptococci and mammalian tissues. , 1967, Advances in immunology.

[80]  Wen He,et al.  An antagonist peptide–EPO receptor complex suggests that receptor dimerization is not sufficient for activation , 1998, Nature Structural Biology.

[81]  S. Hubbard,et al.  Structural Basis for FGF Receptor Dimerization and Activation , 1999, Cell.

[82]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[83]  P. Sun,et al.  Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Roger W. Sperry,et al.  RESTORATION OF VISION AFTER CROSSING OF OPTIC NERVES AND AFTER CONTRALATERAL TRANSPLANTATION OF EYE , 1945 .

[85]  J. Coligan,et al.  Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. , 1999, Immunity.

[86]  F. Burnet The clonal selection theory of acquired immunity , 1959 .

[87]  M. Champe,et al.  Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states. , 1999, Journal of molecular biology.

[88]  J P Changeux,et al.  On the cooperativity of biological membranes. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[89]  W. Rutter,et al.  Control of cell proliferation and cytodifferentiation by a factor reacting with the cell surface. , 1973, Nature: New biology.

[90]  W. Stigelman,et al.  Goodman and Gilman's the Pharmacological Basis of Therapeutics , 1986 .

[91]  N. Kunishima,et al.  Atomic structure of the GCSF–receptor complex showing a new cytokine–receptor recognition scheme , 1999, Nature.

[92]  H. Bourne,et al.  How receptors talk to trimeric G proteins. , 1997, Current opinion in cell biology.

[93]  Hao Wu,et al.  Structural basis for self-association and receptor recognition of human TRAF2 , 1999, Nature.

[94]  E. Neer Heterotrimeric C proteins: Organizers of transmembrane signals , 1995, Cell.

[95]  S. Bass,et al.  Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. , 1999, Journal of molecular biology.

[96]  R. Timpl,et al.  Crystal structure of a scavenger receptor cysteine-rich domain sheds light on an ancient superfamily , 1999, Nature Structural Biology.

[97]  B. Katzung Basic and Clinical Pharmacology , 1982 .

[98]  S. Luria Phage, colicins, and macroregulatory phenomena. , 1970, Science.

[99]  M. G. Kidwell,et al.  Cytoplasm–chromosome interactions in Drosophila melanogaster , 1975, Nature.

[100]  D. Margulies,et al.  Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand , 1999, Nature.

[101]  A. D. de Vos,et al.  Crystal structure of the complex between VEGF and a receptor-blocking peptide. , 1998, Biochemistry.

[102]  K. Garcia,et al.  Structural basis of T cell recognition. , 1999, Annual review of immunology.

[103]  A. Tu Current Topics In Biochemistry. , 1973 .

[104]  H. Bosmann Platelet adhesiveness and aggregation: the collagen:glycosyl, polypeptide:N-acetylgalactosaminyl and glycoprotein:galactosyl transferases of human platelets. , 1971, Biochemical and biophysical research communications.

[105]  I. Wilson,et al.  Shared and Unique Determinants of the Erythropoietin (EPO) Receptor Are Important for Binding EPO and EPO Mimetic Peptide* , 1999, The Journal of Biological Chemistry.

[106]  F. R. Lillie Studies of fertilization. V. The behavior of the spermatozoa of Nereis and Arbacia with special reference to egg‐extractives , 1913 .

[107]  I. Wilson,et al.  Erythropoietin receptor activation by a ligand-induced conformation change. , 1999, Science.

[108]  L. Passador,et al.  ADP-ribosylating toxins. , 1994, Methods in enzymology.

[109]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[110]  Enrico A. Stura,et al.  Functional Mimicry of a Protein Hormone by a Peptide Agonist: The EPO Receptor Complex at 2.8 Å , 1996, Science.

[111]  J. Lilien,et al.  Functional identification of three components which mediate tissue-type specific embryonic cell adhesion , 1974, Nature.

[112]  Christian Wiesmann,et al.  Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor , 1999, Nature.

[113]  Relations between molecular structure 6501 and biological activity: stages in the evolution of current concepts. , 1971, Annual review of pharmacology.

[114]  M. Sela Antigen design and immune response. , 1973, Harvey lectures.

[115]  D. Stuart,et al.  Structure of the TRAIL–DR5 complex reveals mechanisms conferring specificity in apoptotic initiation , 1999, Nature Structural Biology.

[116]  Norbert Wiener,et al.  Cybernetics, or control and communication in the animal and the machine, 2nd ed. , 1961 .

[117]  M. Ultsch,et al.  Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. , 1999, Molecular cell.

[118]  Joseph S. Fruton,et al.  The Collected Papers of Paul Ehrlich , 1957, The Yale Journal of Biology and Medicine.