Effect of combined rolling with subsequent aging on the structure, mechanical and fatigue properties of β titanium alloy

[1]  V. Oborin,et al.  Fatigue and fracture behavior of ultrafine-grained near β titanium alloy produced by radial shear rolling and subsequent aging , 2021 .

[2]  I. Mishin,et al.  The effect of alpha-case formation on plastic deformation and fracture of near β titanium alloy , 2020 .

[3]  S. Suwas,et al.  Microstructure and texture development in Ti-15V-3Cr-3Sn-3Al alloy – Possible role of strain path , 2019, Materials Characterization.

[4]  I. Mishin,et al.  Influence of Combined Helical and Pass Rolling on Structure and Residual Porosity of an AA6082-0.2 wt % Al2O3 Composite Produced by Casting with Ultrasonic Processing , 2017 .

[5]  C. Bolfarini,et al.  High cycle fatigue and fracture behavior of Ti-5Al-5Mo-5V-3Cr alloy with BASCA and double aging treatments , 2016 .

[6]  R. Valiev,et al.  Bulk Nanostructured Materials: Fundamentals and Applications , 2013 .

[7]  Adrian P. Mouritz,et al.  Introduction to Aerospace Materials , 2012 .

[8]  C. H. Ward,et al.  A comparative study of the mechanical properties of high-strength -titanium alloys , 2008 .

[9]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[10]  Valentin N. Moiseyev,et al.  Titanium Alloys: Russian Aircraft and Aerospace Applications , 2005 .

[11]  K. Tokaji,et al.  Mean stress dependence of fatigue strength and subsurface crack initiation in Ti–15Mo–5Zr–3Al alloy , 2000 .

[12]  O. Ivasishin,et al.  Potential of rapid heat treatment of titanium alloys and steels , 1999 .

[13]  S. Semiatin,et al.  Thermomechanical processing of beta titanium alloys—an overview , 1998 .