Coupling Methods in Probability Theory

Coupling means the joint construction of two or more random elements (variables, processes), usually in order to deduce properties of the individual elements. In this paper the method is presented through a series of examples starting with correlation, domination and approximation of random variables, then turning to the asymptotics of Markov processes and random walks, and finally outlining recent developments in stochastic processes and Palm theory. The examples are picked for broadness and simplicity and all arguments are given in full detail (except in the survey part at the end).

[1]  S. Orey Recurrent Markov chains , 1959 .

[2]  B. Jamison,et al.  Markov chains recurrent in the sense of Harris , 1967 .

[3]  D. Ornstein Random walks. II , 1969 .

[4]  D. Ornstein Random walks. I , 1969 .

[5]  Patrick Billingsley,et al.  Weak convergence of measures - applications in probability , 1971, CBMS-NSF regional conference series in applied mathematics.

[6]  J. Kingman,et al.  Random walks with stationary increments and renewal theory , 1979 .

[7]  G. Grimmett,et al.  Probability and random processes , 2002 .

[8]  T. Liggett Interacting Particle Systems , 1985 .

[9]  P. Diaconis,et al.  SHUFFLING CARDS AND STOPPING-TIMES , 1986 .

[10]  Couplings of Markov chains by randomized stopping times , 1987 .

[11]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[12]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[13]  Randomization time for the overhand shuffle , 1989 .

[14]  Marco Scarsini,et al.  Copulae of probability measures on product spaces , 1989 .

[15]  R. Durrett Probability: Theory and Examples , 1993 .

[16]  V. Peña Decoupling and Khintchine's Inequalities for $U$-Statistics , 1992 .

[17]  T. Lindvall Lectures on the Coupling Method , 1992 .

[18]  A. Barbour,et al.  Poisson Approximation , 1992 .

[19]  S. Kwapień,et al.  Random Series and Stochastic Integrals: Single and Multiple , 1992 .

[20]  A. A. Borovkov,et al.  STOCHASTICALLY RECURSIVE SEQUENCES AND THEIR GENERALIZATIONS , 1992 .

[21]  Benjamin Melamed,et al.  An Overview of Tes Processes and Modeling Methodology , 1993, Performance/SIGMETRICS Tutorials.

[22]  R. A. Doney,et al.  4. Probability and Random Processes , 1993 .

[23]  H. Thorisson Shift-coupling in continuous time , 1994 .

[24]  S. Foss,et al.  Two ergodicity criteria for stochastically recursive sequences , 1994 .

[25]  A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement , 1994 .

[26]  K. Sigman Stationary marked point processes : an intuitive approach , 1995 .

[27]  H. Thorisson On time- and cycle-stationarity , 1995 .