Structure and Reactivity of Nonporphyrinic Terminal Manganese(IV)-Hydroxide Complexes in the Oxidative Electrophilic Reaction.

High-valent transition metal-hydroxide complexes have been proposed as essential intermediates in biological and synthetic catalytic reactions. In this work, we report the single-crystal X-ray structure and spectroscopic characteristics of a mononuclear nonporphyrinic MnIV-(OH) complex, [MnIV(Me3-TPADP)(OH)(OCH2CH3)]2+ (2), using various physicochemical methods. Likewise, [MnIV(Me3-TPADP)(OH)(OCH2CF3)]2+ (3), which is thermally stable at room temperature, was also synthesized and characterized spectroscopically. The MnIV-(OH) adducts are capable of performing oxidation reactions with external organic substrates such as C-H bond activation, sulfoxidation, and epoxidation. Kinetic studies, involving the Hammett correlation and kinetic isotope effect, and product analyses indicate that 2 and 3 exhibit electrophilic oxidative reactivity toward hydrocarbons. Density functional theory calculations support the assigned electronic structure and show that direct C-H bond activation of the MnIV-(OH) species is indeed possible.