Non-linear observer design by approximate error linearization

Abstract For a given non-linear system, an observer that provides exactly linear error dynamics can be computed by solving the so-called generalized characteristic equation (GCE). Unfortunately, the existence of a solution to the GCE is not a generic property. For unforced, scalar-output systems, we show how spline functions may be used to construct approximate solutions that minimize a norm of the non-linear terms obstructing linearization of the error dynamics. The resulting error dynamics are shown to be locally exponentially stable. A numerical example illustrates the design and performance of the observer.

[1]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[2]  L. Hunt,et al.  Global transformations of nonlinear systems , 1983 .

[3]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[4]  S. Bortoff,et al.  Synthesis of Optimal Nonlinear Observers , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[5]  Scott A. Bortoff Advanced nonlinear robotic control using digital signal processing , 1994, IEEE Trans. Ind. Electron..

[6]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[7]  S. Żak,et al.  Comparative study of non-linear state-observation techniques , 1987 .

[8]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[9]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[10]  R. Murray,et al.  A homotopy algorithm for approximating geometric distributions by integrable systems , 1996 .

[11]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[12]  J. Hauser Nonlinear control via uniform system approximation , 1991 .

[13]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[14]  J. Hedrick,et al.  Nonlinear Observers—A State-of-the-Art Survey , 1989 .

[15]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[16]  H. Keller,et al.  Design of Nonlinear Observers by a Two-Step-Transformation , 1986 .

[17]  John R. Hauser,et al.  Approximate Feedback Linearization: A Homotopy Operator Approach , 1996 .

[18]  P. Kokotovic,et al.  Nonlinear control via approximate input-output linearization: the ball and beam example , 1992 .