Unification and Projectivity in De Morgan and Kleene Algebras

We provide a complete classification of solvable instances of the equational unification problem over De Morgan and Kleene algebras with respect to unification type. The key tool is a combinatorial characterization of finitely generated projective De Morgan and Kleene algebras.

[1]  J. A. Kalman,et al.  Lattices with involution , 1958 .

[2]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[3]  P. Halmos Lectures on Boolean Algebras , 1963 .

[4]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[5]  R. Balbes,et al.  Injective and projective Heyting algebras , 1970 .

[6]  Alfred Horn,et al.  Projective distributive lattices. , 1970 .

[7]  Silvio Ghilardi,et al.  Unification Through Projectivity , 1997, J. Log. Comput..

[8]  PRINCIPAL CONGRUENCES IN DE MORGAN ALGEBRAS , 2008 .

[10]  William H. Cornish,et al.  Coproducts of De Morgan algebras , 1977, Bulletin of the Australian Mathematical Society.

[11]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[12]  G. Birkhoff Rings of sets , 1937 .

[13]  Paliath Narendran,et al.  Unification Theory , 2001, Handbook of Automated Reasoning.

[14]  R. McKenzie,et al.  Algebras, Lattices, Varieties , 1988 .