An operator splitting algorithm for Tikhonov-regularized topology optimization

In this work, we investigate a Tikhonov-type regularization scheme to address the ill-posedness of the classical compliance minimization problem. We observe that a semi-implicit discretization of the gradient descent flow for minimization of the regularized objective function leads to a convolution of the original gradient descent step with the Green’s function associated with the modified Helmholtz equation. The appearance of ‘‘filtering’’ in this update scheme is different from the current density and sensitivity filtering techniques in the literature. The next iterate is defined as the projection of this provisional density onto the space of admissible density functions. For a particular choice of projection mapping, we show that the algorithm is identical to the well-known forward–backward splitting algorithm, an insight that can be further explored for topology optimization. Also of interest is that with an appropriate choice of the projection parameter, nearly all intermediate densities are eliminated in the optimal solution using the common density material models. We show examples of near binary solutions even for large values of the regularization parameter.

[1]  R. Tyrrell Rockafellar,et al.  Convergence Rates in Forward-Backward Splitting , 1997, SIAM J. Optim..

[2]  Martin Burger,et al.  Phase-Field Relaxation of Topology Optimization with Local Stress Constraints , 2006, SIAM J. Control. Optim..

[3]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[4]  G. Paulino,et al.  ISOPARAMETRIC GRADED FINITE ELEMENTS FOR NONHOMOGENEOUS ISOTROPIC AND ORTHOTROPIC MATERIALS , 2002 .

[5]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[6]  Xu Guo,et al.  A new density‐stiffness interpolation scheme for topology optimization of continuum structures , 2004 .

[7]  Shengyin Wang,et al.  Bilateral filtering for structural topology optimization , 2005 .

[8]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[9]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[10]  J. Petersson Some convergence results in perimeter-controlled topology optimization , 1999 .

[11]  Michael Yu Wang,et al.  Synthesis of shape and topology of multi-material structures with a phase-field method , 2004 .

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  K. Bredies A forward–backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space , 2008, 0807.0778.

[14]  U. Ascher,et al.  Artificial time integration , 2007 .

[15]  Shinji Nishiwaki,et al.  Shape and topology optimization based on the phase field method and sensitivity analysis , 2010, J. Comput. Phys..

[16]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[17]  Pierre Duysinx,et al.  Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization , 2003 .

[18]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[19]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[20]  Michael Patriksson,et al.  Cost Approximation: A Unified Framework of Descent Algorithms for Nonlinear Programs , 1998, SIAM J. Optim..

[21]  Niels Olhoff,et al.  On CAD-integrated structural topology and design optimization , 1991 .

[22]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[23]  T. Borrvall Topology optimization of elastic continua using restriction , 2001 .

[24]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[25]  Shiwei Zhou,et al.  Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition , 2006 .

[26]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[27]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[28]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[29]  K. Svanberg,et al.  On the trajectories of penalization methods for topology optimization , 2001 .

[30]  M L Minion Higher-Order Semi-Implicit Projection Methods , 2001 .

[31]  J. M. Martínez,et al.  A note on the theoretical convergence properties of the SIMP method , 2005 .

[32]  Thomas A. Poulsen A new scheme for imposing a minimum length scale in topology optimization , 2003 .

[33]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[34]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[35]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[36]  Frédéric Guyomarc'h,et al.  An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[37]  J. Petersson,et al.  Topology optimization using regularized intermediate density control , 2001 .

[38]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[39]  A. Rietz Sufficiency of a finite exponent in SIMP (power law) methods , 2001 .

[40]  S. Yamasaki,et al.  Heaviside projection based topology optimization by a PDE-filtered scalar function , 2011 .

[41]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[42]  G. Cohen Optimization by decomposition and coordination: A unified approach , 1978 .

[43]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[44]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[45]  Jasbir S. Arora,et al.  Analysis of optimality criteria and gradient projection methods for optimal structural design , 1980 .

[46]  G. Buttazzo,et al.  An optimal design problem with perimeter penalization , 1993 .

[47]  O. Sigmund,et al.  Filters in topology optimization based on Helmholtz‐type differential equations , 2011 .

[48]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[49]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[50]  B. Bourdin Filters in topology optimization , 2001 .

[51]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .