Spatial ontologies for detecting abnormal maritime behaviour

The upsurge in piracy and the impact of recent environmental disasters have highlighted the need to improve maritime surveillance. Governmental and private initiatives have developed monitoring systems with improved acquisition and analysis capabilities. These systems rely on one major component, namely the detection of abnormal ship behaviour. This implies a detailed formalisation of expert knowledge. However, the quantity of data, the complexity of situations, the failure to take into account their spatial characteristics and the potential for the same scenario to be interpreted in different ways have proved to be significant problems. We therefore propose a new prototype for the analysis of abnormal ship behaviour. The system is based on a spatial ontology associated with a geographical inference engine. It automatically identifies suspicious vessels and associates them with probable behaviours defined by operational staff.

[1]  Kaoru Hiramatsu,et al.  GeoReferencing the Semantic Web : ontology based markup of geographically referenced information , 2004 .

[2]  Gheorghe Tecuci,et al.  Ontologies and the Knowledge Acquisition Bottleneck , 2001, OIS@IJCAI.

[3]  Nicolette de Keizer,et al.  Comparison of reasoners for large ontologies in the OWL 2 EL profile , 2011, Semantic Web.

[4]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[5]  Evren Sirin,et al.  PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine , 2009, OWLED.

[6]  A. Nejat İnce Principles of Integrated Maritime Surveillance Systems , 1999 .

[7]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[8]  Christophe Cruz,et al.  Use of Geospatial Analyses for Semantic Reasoning , 2010, KES.

[9]  Jean Roy,et al.  Exploitation of maritime domain ontologies for anomaly detection and threat analysis , 2010, 2010 International WaterSide Security Conference.

[10]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Mike Dean,et al.  Application of Ontology Translation , 2007, ISWC/ASWC.

[13]  Stefano Spaccapietra,et al.  Des ontologies pour données géographiques , 2003, Rev. Int. Géomatique.

[14]  Joeri van Laere,et al.  Evaluation of a workshop to capture knowledge from subject matter experts in maritime surveillance , 2009, 2009 12th International Conference on Information Fusion.

[15]  Jérôme Gensel,et al.  Relations spatiales qualitatives dans les ontologies géographiques avec ONTOAST , 2007 .

[16]  Tom Ziemke,et al.  Extracting rules from expert operators to support situation awareness in maritime surveillance , 2008, 2008 11th International Conference on Information Fusion.

[17]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[18]  Barbara Essendorfer,et al.  Maritime surveillance with integrated systems , 2010, 2010 International WaterSide Security Conference.

[19]  Frederico T. Fonseca,et al.  Ontology-driven geographic information systems , 1999, GIS '99.

[20]  Amjad Abou Assali Acquisition des connaissances d'adaptation et traitement de l'hétérogénéité dans un système de RàPC basé sur une ontologie , 2010 .