Application Exploration for 3-D Integrated Circuits: TCAM, FIFO, and FFT Case Studies

3-D stacking and integration can provide system advantages. This paper explores application drivers and computer-aided design (CAD) for 3-D integrated circuits (ICs). Interconnect-rich applications especially benefit, sometimes up to the equivalent of two technology nodes. This paper presents physical-design case studies of ternary content-addressable memories (TCAMs), first-in first-out (FIFO) memories, and a 8192-point fast Fourier transform (FFT) processor in order to quantify the benefit of the through-silicon vias in an available 180-nm 3-D process. The TCAM shows a 23% power reduction and the FFT shows a 22% reduction in cycle-time, coupled with an 18% reduction in energy per transform.

[1]  C. Nicopoulos,et al.  Design and Management of 3D Chip Multiprocessors Using Network-in-Memory , 2006, ISCA 2006.

[2]  Anantha Chandrakasan,et al.  Wiring requirement and three-dimensional integration technology for field programmable gate arrays , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[3]  H.P. Hofstee,et al.  Future microprocessors and off-chip SOP interconnect , 2004, IEEE Transactions on Advanced Packaging.

[4]  N. Kanopoulos,et al.  A first-in, first-out memory for signal processing applications , 1986 .

[5]  H. Fujiwara,et al.  A 20-ns 256 K*4 FIFO memory , 1988 .

[6]  C. Joanblanq,et al.  A fast single-chip implementation of 8192 complex point FFT , 1995 .

[7]  Jian Xu,et al.  Demystifying 3D ICs: the pros and cons of going vertical , 2005, IEEE Design & Test of Computers.

[8]  Paul D. Franzon,et al.  Design Considerations and Benefits of Three-Dimensional Ternary Content Addressable Memory , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[9]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[10]  Anantha Chandrakasan,et al.  Timing, energy, and thermal performance of three-dimensional integrated circuits , 2004, GLSVLSI '04.

[11]  T. Van Duzer,et al.  Hybrid Josephson-CMOS FIFO , 1995, IEEE Transactions on Applied Superconductivity.

[12]  Kory Michael Schoenfliess Performance Analysis of System-on-Chip Applications of Three-dimensional Integrated Circuits , 2006 .

[13]  H. Wang,et al.  Double-edge-triggered address pointer for low-power high-speed FIFO memories , 1997 .

[14]  Mircea R. Stan,et al.  Power reduction techniques for a spread spectrum based correlator , 1997, Proceedings of 1997 International Symposium on Low Power Electronics and Design.

[15]  Shousheng He,et al.  Design and implementation of a 1024-point pipeline FFT processor , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[16]  K. Warner,et al.  Three-dimensional integrated circuits for low-power, high-bandwidth systems on a chip , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[17]  W. Weber,et al.  Performance modeling of the interconnect structure of a 3-dimensionally integrated RISC-processor/cache-system , 1995, 1995 Proceedings. 45th Electronic Components and Technology Conference.

[18]  Kaustav Banerjee,et al.  3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration , 2001, Proc. IEEE.

[19]  Shyamkumar Thoziyoor,et al.  1 CACTI 4 . 0 , 2006 .

[20]  L.R. Fenstermaker,et al.  A low-power generator-based FIFO using ring pointers and current-mode sensing , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[21]  T. Ogura,et al.  A 20 kbit associative memory LSI for artificial intelligence machines , 1989 .

[22]  Bo Hu,et al.  Implementing a 2-Gbs 1024-bit ½-rate low-density parity-check code decoder in three-dimensional integrated circuits , 2007, 2007 25th International Conference on Computer Design.

[23]  Hao Hua,et al.  Performance Trend in Three-Dimensional Integrated Circuits , 2006, 2006 International Interconnect Technology Conference.

[24]  Hannu Tenhunen,et al.  A new VLSI-oriented FFT algorithm and implementation , 1998, Proceedings Eleventh Annual IEEE International ASIC Conference (Cat. No.98TH8372).

[25]  Nobutaro Shibata,et al.  A current-sensed high-speed and low-power first-in-first-out memory using a wordline/bitline-swapped dual-port SRAM cell , 2002 .

[26]  P. Duhamel,et al.  `Split radix' FFT algorithm , 1984 .

[27]  Pei-Yun Tsai,et al.  Low-power variable-length fast Fourier transform processor , 2005 .

[28]  Hao Hua Design and Verification Methodology for Complex Three-Dimensional Digital Integrated Circuit , 2007 .

[29]  C. G. Sodini,et al.  A ternary content addressable search engine , 1989 .

[30]  K. J. Schultz,et al.  Fully Parallel 30-MHz , 2 . 5-Mb CAM , 1998 .

[31]  Yu Hen Hu,et al.  The quantization effects of the CORDIC algorithm , 1992, IEEE Trans. Signal Process..

[32]  A. Rahman,et al.  Comparison of key performance metrics in two- and three-dimensional integrated circuits , 2000, Proceedings of the IEEE 2000 International Interconnect Technology Conference (Cat. No.00EX407).

[33]  Mit Press A Fast Fourier Transform Algorithm Using Base 8 Iterations , 1969 .

[34]  Kia Bazargan,et al.  Placement and routing in 3D integrated circuits , 2005, IEEE Design & Test of Computers.

[35]  Chen-Yi Lee,et al.  A dynamic scaling FFT processor for DVB-T applications , 2004 .