A numerical and experimental analysis of the flow field in a two-dimensional model of the human carotid artery bifurcation.

Axial velocities were measured in an enlarged, two-dimensional, rigid model of the carotid artery bifurcation by means of a laser-Doppler anemometer, under both steady and unsteady flow conditions. Also a numerical model was developed, based on the finite element approximation of the Navier-Stokes and continuity equations. From this study it appeared that the numerically predicted velocities agree well with the experimentally obtained values. Besides, the bifurcation hardly influenced the upstream flow in the main branch (common carotid artery), high velocity gradients were observed at the divider walls of the daughter branches (internal and external carotid arteries) and large zones with reversed flow were present near the nondivider walls of these branches. For steady flow the maximal diameter of this zone at the entrance of the internal carotid artery (carotid sinus) was about 25% of the local diameter of this branch. For unsteady flow this zone was absent during the initial phase of flow acceleration and maximal at the end of flow deceleration with a maximal diameter of about 50% of the local diameter of the carotid sinus.

[1]  D. Giddens,et al.  Steady flow in a model of the human carotid bifurcation. Part II--laser-Doppler anemometer measurements. , 1982, Journal of biomechanics.

[2]  D. Giddens,et al.  Steady flow in a model of the human carotid bifurcation. Part I--flow visualization. , 1982, Journal of biomechanics.

[3]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[4]  D. Ku,et al.  Pulsatile Flow in a Model Carotid Bifurcation , 1983, Arteriosclerosis.

[5]  L. Drain The Laser Doppler Technique , 1980 .

[6]  K Perktold,et al.  [Finite element computer simulation of pulsatile flow in an arterial bifurcation (author's transl)]. , 1982, Biomedizinische Technik. Biomedical engineering.

[7]  D. Ku,et al.  Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress , 1985, Arteriosclerosis.

[8]  R S Reneman,et al.  Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages. , 1985, Circulation.

[9]  van Aa Anton Steenhoven,et al.  A finite element approximation of the unsteady two‐dimensional Navier–Stokes equations , 1986 .

[10]  S O Wille Numerical simulations of steady flow inside a three dimensional aortic bifurcation model. , 1984, Journal of biomedical engineering.

[11]  K. J. De Witt,et al.  Pulsatile flow through a bifurcation with applications to arterial disease. , 1976, Journal of biomechanics.