New Paradigms for Asteroid Formation

Asteroids and meteorites provide key evidence on the formation of planetesimals in the Solar System. Asteroids are traditionally thought to form in a bottom-up process by coagulation within a population of initially km-scale planetesimals. However, new models challenge this idea by demonstrating that asteroids of sizes from 100 to 1000 km can form directly from the gravitational collapse of small particles which have organised themselves in dense filaments and clusters in the turbulent gas. Particles concentrate passively between eddies down to the smallest scales of the turbulent gas flow and inside large-scale pressure bumps and vortices. The streaming instability causes particles to take an active role in the concentration, by piling up in dense filaments whose friction on the gas reduces the radial drift compared to that of isolated particles. In this chapter we review new paradigms for asteroid formation and compare critically against the observed properties of asteroids as well as constraints from meteorites. Chondrules of typical sizes from 0.1 to 1 mm are ubiquitous in primitive meteorites and likely represent the primary building blocks of asteroids. Chondrule-sized particles are nevertheless tightly coupled to the gas via friction and are therefore hard to concentrate in large amounts in the turbulent gas. We review recent progress on understanding the incorporation of chondrules into the asteroids, including layered accretion models where chondrules are accreted onto asteroids over millions of years. We highlight in the end ten unsolved questions in asteroid formation where we expect that progress will be made over the next decade.

[1]  A. Johansen,et al.  Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion , 2015, Science Advances.

[2]  J. Blum,et al.  Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties , 2014, 1412.3236.

[3]  A. Johansen,et al.  The structure of protoplanetary discs around evolving young stars , 2014, 1411.3255.

[4]  Alison Biltz,et al.  Chondrule size and related physical properties: a compilation and evaluation of current data across all meteorite groups , 2014, 1408.6581.

[5]  A. Johansen,et al.  Separating gas-giant and ice-giant planets by halting pebble accretion , 2014, 1408.6087.

[6]  A. Crida,et al.  Stellar irradiated discs and implications on migration of embedded planets III: viscosity transitions , 2014, 1408.1016.

[7]  A. Johansen,et al.  ON THE FEEDING ZONE OF PLANETESIMAL FORMATION BY THE STREAMING INSTABILITY , 2014, 1407.5995.

[8]  T. Hiroi,et al.  MULTIPLE AND FAST: THE ACCRETION OF ORDINARY CHONDRITE PARENT BODIES , 2014, 1405.6850.

[9]  S. Raymond,et al.  Water delivery and giant impacts in the 'Grand Tack' scenario , 2014, 1407.3290.

[10]  Carnegie,et al.  A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.

[11]  E. Scott,et al.  Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constraints from metallic Fe–Ni , 2014, 1404.0448.

[12]  J. Cuzzi,et al.  CONTRASTING SIZE DISTRIBUTIONS OF CHONDRULES AND INCLUSIONS IN ALLENDE CV3. , 2014 .

[13]  J. Cuzzi,et al.  Turbulent Concentration of MM-Size Particles in the Protoplanetary Nebula: Scaled-Dependent Multiplier Functions , 2014 .

[14]  E. Young Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system , 2014, 1403.0832.

[15]  R. Chevalier,et al.  GAMMA-RAY EMISSION FROM SUPERNOVA REMNANT INTERACTIONS WITH MOLECULAR CLUMPS , 2014, 1403.0929.

[16]  R. Fu,et al.  The fate of magmas in planetesimals and the retention of primitive chondritic crusts , 2014 .

[17]  A. Brearley,et al.  Manganese-Chromium Ages of Aqueous Alteration of Unequilibrated Ordinary Chondrites , 2014 .

[18]  M. Gounelle Aluminium-26 in the Early Solar System: A Probability Estimate , 2014 .

[19]  Hans Rickman,et al.  The multifaceted planetesimal formation process , 2014, 1402.1344.

[20]  E. Jacquet Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models , 2014, 1402.0533.

[21]  C. Gammie,et al.  Transport and Accretion in Planet-Forming Disks , 2014, 1401.7306.

[22]  E. Jacquet The quasi-universality of chondrule size as a constraint for chondrule formation models , 2014, 1401.3721.

[23]  W. Fraser,et al.  THE ABSOLUTE MAGNITUDE DISTRIBUTION OF KUIPER BELT OBJECTS , 2014, 1401.2157.

[24]  M. Trieloff,et al.  Early Thermal Evolution of Planetesimals and its Impact on Processing and Dating of Meteoritic Material , 2013, 1312.3509.

[25]  H. Kimura,et al.  Growth efficiency of dust aggregates through collisions with high mass ratios , 2013 .

[26]  D. Baratoux,et al.  Thermal history of the H-chondrite parent body: Implications for metamorphic grade and accretionary time-scales , 2013 .

[27]  M. Trieloff,et al.  Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion , 2013 .

[28]  Q. Yin,et al.  26Al‐26Mg isotope systematics of the first solids in the early solar system , 2013 .

[29]  C. Dullemond,et al.  Planetesimal formation via sweep-up growth at the inner edge of dead zones , 2013, 1306.3412.

[30]  Linda T. Elkins-Tanton,et al.  Differentiated Planetesimals and the Parent Bodies of Chondrites , 2013 .

[31]  S. Okuzumi,et al.  THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. II. LIMITS ON THE VIABILITY OF RUNAWAY ACCRETION , 2013, 1305.1890.

[32]  A. Rubin,et al.  Compositional and petrographic similarities of CV and CK chondrites: A single group with variations in textures and volatile concentrations attributable to impact heating, crushing and oxidation , 2013 .

[33]  A. Boss,et al.  TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS , 2013, 1305.0249.

[34]  D. Papanastassiou,et al.  Fe-Ni Isotopic Systematics in UOC QUE 97008 and Semarkona Chondrules , 2013 .

[35]  K. Ros Ice Condensation as a Planet Formation Mechanism , 2013, Proceedings of the International Astronomical Union.

[36]  M. Bizzarro,et al.  ABUNDANCE OF 26Al AND 60Fe IN EVOLVING GIANT MOLECULAR CLOUDS , 2013, 1302.0843.

[37]  M. Chaussidon,et al.  VARIABLE AND EXTREME IRRADIATION CONDITIONS IN THE EARLY SOLAR SYSTEM INFERRED FROM THE INITIAL ABUNDANCE OF 10Be IN ISHEYEVO CAIs , 2013 .

[38]  Y. Sano,et al.  Mn–Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite , 2013 .

[39]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[40]  J. Stone,et al.  WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND , 2013, 1301.0318.

[41]  R. Wieler,et al.  Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites , 2012 .

[42]  N. Dauphas,et al.  Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk , 2012, 1212.1490.

[43]  K. Metzler Ultrarapid chondrite formation by hot chondrule accretion? Evidence from unequilibrated ordinary chondrites , 2012 .

[44]  R. Ogliore,et al.  Recalculation of data for short‐lived radionuclide systems using less‐biased ratio estimation , 2012 .

[45]  A. Crida,et al.  Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs , 2012, 1211.6345.

[46]  A. Johansen,et al.  GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS , 2012, 1211.2095.

[47]  M. Bizzarro,et al.  The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk , 2012, Science.

[48]  O. Alard,et al.  Chondrule trace element geochemistry at the mineral scale , 2012, 1502.01847.

[49]  O. Umurhan,et al.  Linear and non-linear evolution of the vertical shear instability in accretion discs , 2012, 1209.2753.

[50]  G. Libourel,et al.  Lack of relationship between 26Al ages of chondrules and their mineralogical and chemical compositions , 2012 .

[51]  F. Meru,et al.  FROM DUST TO PLANETESIMALS: AN IMPROVED MODEL FOR COLLISIONAL GROWTH IN PROTOPLANETARY DISKS , 2012, 1209.0013.

[52]  Georges Meynet,et al.  Solar system genealogy revealed by extinct short-lived radionuclides in meteorites , 2012, 1208.5879.

[53]  D. A. García-Hernández,et al.  Short‐lived radioactivity in the early solar system: The Super‐AGB star hypothesis , 2012, 1208.5816.

[54]  J. Blum,et al.  THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VII. THE LOW-VELOCITY COLLISION BEHAVIOR OF LARGE DUST AGGLOMERATES , 2012, 1208.3095.

[55]  C. Dullemond,et al.  Breaking through: The effects of a velocity distribution on barriers to dust growth , 2012, 1208.0304.

[56]  M. Livio,et al.  On the evolution of the Snow Line in Protoplanetary Discs , 2012, Proceedings of the International Astronomical Union.

[57]  D. Ebel,et al.  Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? , 2012 .

[58]  T. Ushikubo,et al.  Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules , 2012 .

[59]  F. Timmes,et al.  MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS , 2012, 1206.6516.

[60]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[61]  Harold F. Levison,et al.  An Archaean heavy bombardment from a destabilized extension of the asteroid belt , 2012, Nature.

[62]  Hiroshi Kobayashi,et al.  RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SNOW LINE: A PATHWAY TO SUCCESSFUL ICY PLANETESIMAL FORMATION , 2012, 1204.5035.

[63]  S. Fromang,et al.  On the aerodynamic redistribution of chondrite components in protoplanetary disks , 2012, 1204.4337.

[64]  Typhoon Lee,et al.  A heterogeneous solar nebula as sampled by CM hibonite grains , 2012 .

[65]  P. Armitage,et al.  Emergent mesoscale phenomena in magnetized accretion disc turbulence , 2012, 1203.0314.

[66]  J. Cuzzi,et al.  Primary Accretion by Turbulent Concentration: The Rate of Planetesimal Formation and the Role of Vortex Tubes , 2012 .

[67]  B. Ercolano,et al.  A simple model for the evolution of the dust population in protoplanetary disks , 2012, 1201.5781.

[68]  T. Henning,et al.  Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth , 2012, 1201.4282.

[69]  M. Fujimoto,et al.  PLANETESIMAL FORMATION AT THE BOUNDARY BETWEEN STEADY SUPER/SUB-KEPLERIAN FLOW CREATED BY INHOMOGENEOUS GROWTH OF MAGNETOROTATIONAL INSTABILITY , 2011, 1112.5264.

[70]  D. Günther,et al.  60Fe-60Ni systematics in the eucrite parent body: A case study of Bouvante and Juvinas , 2011 .

[71]  Anders Johansen,et al.  Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities , 2011, 1111.0221.

[72]  G. Wasserburg,et al.  Mg isotopic heterogeneity, Al‐Mg isochrons, and canonical 26Al/27Al in the early solar system , 2011 .

[73]  S. Weidenschilling Initial sizes of planetesimals and accretion of the asteroids , 2011 .

[74]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[75]  M. Bizzarro,et al.  EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK , 2011 .

[76]  M. Norman,et al.  TURBULENT CLUSTERING OF PROTOPLANETARY DUST AND PLANETESIMAL FORMATION , 2011, 1106.3695.

[77]  A. Rubin Origin of the differences in refractory-lithophile-element abundances among chondrite groups , 2011 .

[78]  J. Blum,et al.  Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities , 2011, 1105.3909.

[79]  S. Balbus,et al.  On linear dust–gas streaming instabilities in protoplanetary discs , 2011, 1104.5396.

[80]  M. Chaussidon,et al.  A Perspective from Extinct Radionuclides on a Young Stellar Object: The Sun and Its Accretion Disk , 2011, 1105.5172.

[81]  K. A. Dyl,et al.  Earliest rock fabric formed in the Solar System preserved in a chondrule rim , 2011 .

[82]  J. Blum,et al.  LOW-VELOCITY COLLISIONS OF CENTIMETER-SIZED DUST AGGREGATES , 2011, 1102.4441.

[83]  K. Lodders Solar System Abundances of the Elements , 2010, 1010.2746.

[84]  Heidelberg,et al.  High-resolution simulations of planetesimal formation in turbulent protoplanetary discs , 2010, Proceedings of the International Astronomical Union.

[85]  J. Ge,et al.  FROM DUST TO PLANETESIMAL: THE SNOWBALL PHASE? , 2010, 1009.4636.

[86]  C. Dullemond,et al.  Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits , 2010, 1009.3011.

[87]  E. Gaidos,et al.  HETEROGENEOUS DISTRIBUTION OF 26Al AT THE BIRTH OF THE SOLAR SYSTEM , 2010, 1105.2620.

[88]  K. Menten,et al.  A gallery of bubbles. The nature of the bubbles observed by Spitzer and what ATLASGAL tells us about the surrounding neutral material , 2010, 1008.0926.

[89]  John Chambers,et al.  Planetesimal formation by turbulent concentration , 2010 .

[90]  R. Nelson,et al.  On the dynamics of planetesimals embedded in turbulent protoplanetary discs with dead zones , 2010, 1104.3987.

[91]  C. Ormel,et al.  The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks , 2010, 1007.0916.

[92]  A. Boss,et al.  The importance of experiments: Constraints on chondrule formation models , 2010 .

[93]  R. Jones Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk , 2010 .

[94]  J. Stone,et al.  DYNAMICS OF SOLIDS IN THE MIDPLANE OF PROTOPLANETARY DISKS: IMPLICATIONS FOR PLANETESIMAL FORMATION , 2010, 1005.4982.

[95]  H. Palme,et al.  The chemical relationship between chondrules and matrix and the chondrule matrix complementarity , 2010 .

[96]  B. Weiss,et al.  Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation , 2010 .

[97]  W. Bottke,et al.  Towards initial mass functions for asteroids and Kuiper Belt Objects , 2010, 1004.0270.

[98]  V. Tatischeff,et al.  A RUNAWAY WOLF–RAYET STAR AS THE ORIGIN OF 26Al IN THE EARLY SOLAR SYSTEM , 2010, 1003.3856.

[99]  Federico Toschi,et al.  Intermittency in the velocity distribution of heavy particles in turbulence , 2010, Journal of Fluid Mechanics.

[100]  C. Dullemond,et al.  Gas- and dust evolution in protoplanetary disks , 2010, 1002.0335.

[101]  J. Papaloizou,et al.  The subcritical baroclinic instability in local accretion disc models , 2009, 0911.0663.

[102]  C. Dullemond,et al.  The outcome of protoplanetary dust growth: pebbles, boulders or planetesimals? , 2009, 1001.0488.

[103]  A. Johansen,et al.  Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment , 2009, 0910.1524.

[104]  A. Youdin,et al.  Forming Planetesimals in Solar and Extrasolar Nebulae , 2009, 0909.2652.

[105]  H. Kimura,et al.  COLLISIONAL GROWTH CONDITIONS FOR DUST AGGREGATES , 2009 .

[106]  B. Meyer,et al.  Stellar sources of the short-lived radionuclides in the early solar system , 2009 .

[107]  A. Johansen,et al.  PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY , 2009, 0909.0259.

[108]  A. Davis,et al.  Origin and chronology of chondritic components: A review , 2009 .

[109]  S. Sirono PLANETESIMAL FORMATION INDUCED BY SINTERING , 2009 .

[110]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[111]  K. Menou,et al.  PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL UNSTRATIFIED DISKS , 2009, Proceedings of the International Astronomical Union.

[112]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[113]  Linda T. Elkins-Tanton,et al.  Chondrites as samples of differentiated planetesimals , 2009 .

[114]  P. Hennebelle,et al.  SUPERNOVA PROPAGATION AND CLOUD ENRICHMENT: A NEW MODEL FOR THE ORIGIN OF 60Fe IN THE EARLY SOLAR SYSTEM , 2009, 0904.1661.

[115]  Sarah T. Stewart,et al.  VELOCITY-DEPENDENT CATASTROPHIC DISRUPTION CRITERIA FOR PLANETESIMALS , 2009 .

[116]  Jonathan P. Williams,et al.  26Al AND THE FORMATION OF THE SOLAR SYSTEM FROM A MOLECULAR CLOUD CONTAMINATED BY WOLF–RAYET WINDS , 2009, 0901.3364.

[117]  A. Johansen,et al.  Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks , 2009, 0901.1638.

[118]  Leiden University,et al.  ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE , 2008, 0811.3937.

[119]  Sara S. Russell,et al.  Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations , 2008, 0810.2174.

[120]  J. Blum,et al.  The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .

[121]  D. Nesvorný,et al.  Visible spectroscopy of extremely young asteroid families , 2008 .

[122]  Y. Amelin,et al.  26 Al- 26 Mg and 207 Pb- 206 Pb systematics of Allende CAIs: Canonical solar initial 26 Al/ 27 Al ratio reinstated , 2008 .

[123]  A. Johansen,et al.  Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitati , 2008, 0807.2622.

[124]  T. Guillot,et al.  Accretion and Destruction of Planetesimals in Turbulent Disks , 2008, 0807.1761.

[125]  F. Ciesla,et al.  The Formation Conditions of Chondrules and Chondrites , 2008, Science.

[126]  D. Prior,et al.  Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates? , 2008 .

[127]  A. Meibom,et al.  The Origin of Short-lived Radionuclides and the Astrophysical Environment of Solar System Formation , 2008, 0805.0569.

[128]  T. Burbine,et al.  Mineralogical analysis of the Eos family from near-infrared spectra , 2008 .

[129]  Karim Shariff,et al.  Toward Planetesimals: Dense Chondrule Clumps in the Protoplanetary Nebula , 2008, 0804.3526.

[130]  A. Tielens,et al.  Co-Accretion of Chondrules and Dust in the Solar Nebula , 2008, 0802.4048.

[131]  Hubert Klahr,et al.  A coagulation-fragmentation model for the turbulent growth and destruction of preplanetesimals , 2008, 0802.3331.

[132]  T. Henning,et al.  Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.

[133]  L. Fouchet,et al.  Dust evolution in protoplanetary disks , 2007, Proceedings of the International Astronomical Union.

[134]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[135]  D. Lin,et al.  Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks , 2007, 0706.1272.

[136]  Jonathan P. Williams,et al.  On the Likelihood of Supernova Enrichment of Protoplanetary Disks , 2007, 0705.3459.

[137]  J. Cuzzi,et al.  Cascade model for particle concentration and enstrophy in fully developed turbulence with mass-loading feedback. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  N. Ouellette,et al.  Interaction of Supernova Ejecta with Nearby Protoplanetary Disks , 2007, 0704.1652.

[139]  MPIA Heidelberg,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods , 2007, astro-ph/0702625.

[140]  A. Johansen,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration , 2007, astro-ph/0702626.

[141]  Jeffrey S. Oishi,et al.  Turbulent Torques on Protoplanets in a Dead Zone , 2007, astro-ph/0702549.

[142]  G. Libourel,et al.  Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin , 2007 .

[143]  J. Cuzzi,et al.  Closed-form expressions for particle relative velocities induced by turbulence , 2007, astro-ph/0702303.

[144]  S. Woosley,et al.  Nucleosynthesis and remnants in massive stars of solar metallicity , 2007, astro-ph/0702176.

[145]  D. Günther,et al.  Correlated Iron 60, Nickel 62, and Zirconium 96 in Refractory Inclusions and the Origin of the Solar System , 2007 .

[146]  B. Fields,et al.  Radioactive Probes of the Supernova-contaminated Solar Nebula: Evidence that the Sun Was Born in a Cluster , 2006, astro-ph/0608411.

[147]  F Toschi,et al.  Heavy particle concentration in turbulence at dissipative and inertial scales. , 2006, Physical review letters.

[148]  J. Cuzzi,et al.  Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across , 2006, Nature.

[149]  C. Dominik,et al.  Growth of Dust as the Initial Step Toward Planet Formation , 2006, astro-ph/0602617.

[150]  S. Tachibana,et al.  60Fe in Chondrites: Debris from a Nearby Supernova in the Early Solar System? , 2006 .

[151]  P. Armitage,et al.  The Stellar Mass-Accretion Rate Relation in T Tauri Stars and Brown Dwarfs , 2006 .

[152]  L. Leshin,et al.  Oxygen isotope and 26Al‐26Mg systematics of aluminum‐rich chondrules from unequilibrated enstatite chondrites , 2006 .

[153]  F. Shu,et al.  The Irradiation Origin of Beryllium Radioisotopes and Other Short-lived Radionuclides , 2005, astro-ph/0512517.

[154]  E. Scott,et al.  Nebula Evolution of Thermally Processed Solids: Reconciling Models and Meteorites , 2005 .

[155]  J. Wood The Chondrite Types and Their Origins , 2005 .

[156]  G. Libourel,et al.  Experimental Constraints on Chondrule Formation , 2005 .

[157]  G. Wurm,et al.  Growth of planetesimals by impacts at ∼25 m/s , 2005 .

[158]  A. Rubin Relationships Among Intrinsic Properties of Ordinary Chondrites: Oxidation State, Bulk Chemistry, Oxygen-isotopic Composition, Petrologic Type, and Chondrule Size , 2005 .

[159]  P. Hoppe,et al.  60Fe: A Heat Source for Planetary Differentiation from a Nearby Supernova Explosion , 2005 .

[160]  T. Henning,et al.  Gravoturbulent Formation of Planetesimals , 2005, astro-ph/0504628.

[161]  Fernando Roig,et al.  Reanalysis of asteroid families structure through visible spectroscopy , 2005 .

[162]  K. Keil,et al.  Amoeboid olivine aggregates and related objects in carbonaceous chondrites: records of nebular and asteroid processes , 2004 .

[163]  Andrew N. Youdin,et al.  Streaming Instabilities in Protoplanetary Disks , 2004, astro-ph/0409263.

[164]  S. Desch,et al.  On the origin of the “kleine Kügelchen” called Chondrules , 2004 .

[165]  L. Leshin,et al.  The Cradle of the Solar System , 2004, Science.

[166]  J. Cuzzi Blowing in the wind: III. Accretion of dust rims by chondrule-sized particles in a turbulent protoplanetary nebula , 2004 .

[167]  D. Lauretta,et al.  The frequency of compound chondrules and implications for chondrule formation , 2004 .

[168]  R. Sari,et al.  Shaping the Kuiper belt size distribution by shattering large but strengthless bodies , 2004, astro-ph/0402138.

[169]  G. MacPherson Calcium-Aluminum-rich Inclusions in Chondritic Meteorites , 2003 .

[170]  R. Shaw PARTICLE-TURBULENCE INTERACTIONS IN ATMOSPHERIC CLOUDS , 2003 .

[171]  F. Adams,et al.  Type I Planetary Migration with MHD Turbulence , 2003, astro-ph/0308406.

[172]  Richard P. Nelson,et al.  The interaction of giant planets with a disc with MHD turbulence – IV. Migration rates of embedded protoplanets , 2003, astro-ph/0308360.

[173]  Tucson,et al.  Making other earths: dynamical simulations of terrestrial planet formation and water delivery , 2003, astro-ph/0308159.

[174]  Jeffrey N. Cuzzi,et al.  Blowing in the wind: I. Velocities of chondrule-sized particles in a turbulent protoplanetary nebula , 2003 .

[175]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[176]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[177]  S. Tachibana,et al.  The Initial Abundance of 60Fe in the Solar System , 2003 .

[178]  H Germany,et al.  Turbulence in Accretion Disks: Vorticity Generation and Angular Momentum Transport via the Global Baroclinic Instability , 2002, astro-ph/0211629.

[179]  A. Rubin,et al.  Size‐frequency distributions of chondrules and chondrule fragments in LL3 chondrites: Implications for parent‐body fragmentation of chondrules , 2002 .

[180]  A. Youdin,et al.  Planetesimal Formation by Gravitational Instability , 2002, astro-ph/0207536.

[181]  C. Göpel,et al.  Aluminum‐26 in H4 chondrites: Implications for its production and its usefulness as a fine‐scale chronometer for early solar system events , 2002 .

[182]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[183]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[184]  J. Cuzzi,et al.  Size-selective Concentration of Chondrules and Other Small Particles in Protoplanetary Nebula Turbulence , 2000, astro-ph/0009210.

[185]  R. Chevalier Young Circumstellar Disks near Evolved Massive Stars and Supernovae , 2000, astro-ph/0006029.

[186]  A. Rubin Petrologic, geochemical and experimental constraints on models of chondrule formation , 2000 .

[187]  Harry Y. McSween,et al.  SIZES AND MASSES OF CHONDRULES AND METAL-TROILITE GRAINS IN ORDINARY CHONDRITES : POSSIBLE IMPLICATIONS FOR NEBULAR SORTING , 1999 .

[188]  T. Henning,et al.  Dust Properties and Assembly of Large Particles in Protoplanetary Disks , 1999, astro-ph/9902241.

[189]  F. Shu,et al.  Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites , 1998 .

[190]  R. Durisen,et al.  An Accretion Rim Constraint on Chondrule Formation Theories , 1998 .

[191]  R. Chevalier Supernova Remnants in Molecular Clouds , 1998, astro-ph/0102211.

[192]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[193]  C. Dominik,et al.  The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space , 1997 .

[194]  G. Meynet,et al.  Short-lived radionuclide production by non-exploding Wolf-Rayet stars , 1997 .

[195]  E. Scott,et al.  Constraints on the role of impact heating and melting in asteroids , 1997 .

[196]  A. Rubin,et al.  A Critical Evaluation of the Evidence for Hot Accretion , 1996 .

[197]  P. Barge,et al.  DID PLANET FORMATION BEGIN INSIDE PERSISTENT GASEOUS VORTICES , 1995, astro-ph/9501050.

[198]  J. Goswami,et al.  41Ca in the Early Solar System , 1994 .

[199]  P. Myers,et al.  An Observational Estimate of the Probability of Encounters between Mass-losing Evolved Stars and Molecular Clouds , 1994 .

[200]  M. Maxey,et al.  Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence , 1993, Journal of Fluid Mechanics.

[201]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[202]  G. Lugmair,et al.  Live Iron-60 in the Early Solar System , 1993, Science.

[203]  H. McSween,et al.  Heliocentric Zoning of the Asteroid Belt by Aluminum-26 Heating , 1993, Science.

[204]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[205]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[206]  Zhong-wei Hu Solar system abundances of the elements. , 1991 .

[207]  John R. Fessler,et al.  Preferential concentration of particles by turbulence , 1991 .

[208]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[209]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[210]  K. Squires,et al.  Particle response and turbulence modification in isotropic turbulence , 1990 .

[211]  W. Markiewicz,et al.  Grain growth in turbulent protoplanetary accretion disks , 1988 .

[212]  C. Hayashi,et al.  Settling and growth of dust particles in a laminar phase of a low-mass solar nebula , 1986 .

[213]  L. Grossman,et al.  Accretionary rims on inclusions in the Allende meteorite , 1985 .

[214]  E. Scott,et al.  Matrix material in type 3 chondrites - Occurrence, heterogeneity and relationship with chondrules , 1984 .

[215]  M. Sekiya Gravitational instabilities in a dust-gas layer and formation of planetesimals in the solar nebula , 1983 .

[216]  G. Morfill,et al.  Collisions between grains in a turbulent gas , 1980 .

[217]  Typhoon Lee A local proton irradiation model for isotopic anomalies in the solar system. , 1978 .

[218]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[219]  J. Truran,et al.  The supernova trigger for formation of the solar system , 1977 .

[220]  R. T. Dodd Accretion of the ordinary chondrites , 1975 .

[221]  D. Colburn,et al.  Electrical Heating of Meteorite Parent Bodies and Planets by Dynamo Induction from a Pre-main Sequence T Tauri “Solar Wind” , 1968, Nature.

[222]  H. Urey THE COSMIC ABUNDANCES OF POTASSIUM, URANIUM, AND THORIUM AND THE HEAT BALANCES OF THE EARTH, THE MOON, AND MARS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[223]  A. Brearley 1.9 – Nebular Versus Parent Body Processing , 2014 .

[224]  E. Scott,et al.  Chondrites and Their Components , 2014 .

[225]  A. Brearley Nebular Versus Parent Body Processing , 2014 .

[226]  R. Ballouz Planetesimal formation by turbulent concentration . , 2012 .

[227]  M. Humayun,et al.  CHEMICAL COMPOSITION OF MATRIX AND CHONDRULES IN CARBONACEOUS CHONDRITES : IMPLICATIONS FOR DISK TRANSPORT , 2012 .

[228]  K. Menou,et al.  PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL STRATIFIED DISKS , 2012 .

[229]  A. Fuente,et al.  Dynamics of Solids in the Midplane of Protoplanetary Disks : Implications for Planetesimal Formation , 2010 .

[230]  C. Giammanco,et al.  Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave . I . Varied Shock Speeds , 2009 .

[231]  A. Nakamura,et al.  Collisional disruption of porous sintered glass beads at low impact velocities , 2007 .

[232]  Otto Eugster,et al.  Irradiation Records, Cosmic-Ray Exposure Ages, and Transfer Times of Meteorites , 2006 .

[233]  E. Scott,et al.  The Chondrite Types and their Origins , 2006 .

[234]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[235]  Alan E. Rubin,et al.  Thermal Metamorphism in Chondrites , 2006 .

[236]  D. Lauretta,et al.  Petrology and Origin of Ferromagnesian Silicate Chondrules , 2006 .

[237]  S. Weidenschilling,et al.  Particle-Gas Dynamics and Primary Accretion , 2006 .

[238]  E. Scott,et al.  Experimental Constraints on Chondrule Formation , 2005 .

[239]  J.,et al.  Particle-Gas Dynamics and Primary Accretion , 2005 .

[240]  J. Cuzzi,et al.  Turbulence, Chondrules, and Planetesimals , 1998 .

[241]  A. Brearley Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. , 1996 .

[242]  A. Boss A concise guide to chondrule formation models. , 1996 .

[243]  G. J. Taylor,et al.  Original structures, and fragmentation and reassembly histories of asteroids - Evidence from meteorites , 1987 .

[244]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[245]  E. Scott,et al.  Metallic minerals, thermal histories and parent bodies of some xenolithic, ordinary chondrite meteorites , 1981 .

[246]  G. Wasserburg,et al.  Demonstration of Mg-26 excess in Allende and evidence for Al-26 , 1976 .

[247]  F. Whipple On certain aerodynamic processes for asteroids and comets , 1972 .

[248]  Z. A. Trapeznikova On the Interaction of , 1959 .