Generalized excess noise factor for avalanche photodiodes of arbitrary structure

A generic model for a multilayer avalanche photodiode (APD) that admits arbitrary variation (with position) of the bandgap, dark generation rate, and ionization coefficients within each stage of the device is considered. Expressions for the mean multiplication and excess noise factors for dark carriers alone, injected carriers alone, and for an arbitrary superposition of dark and injected carriers are derived for this general model. Special cases of the results reduce to well-known expressions for the conventional APD, the separate absorption/grading/multiplication APD, the multiquantum-well APD, and the staircase APD. >

[1]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[2]  Bahaa E. A. Saleh,et al.  Theory of the temporal response of a simple multiquantum-well avalanche photodiode , 1988 .

[3]  Noise properties and time response of the staircase avalanche photodiode , 1985 .

[4]  G. E. Stillman,et al.  Chapter 5 Avalanche Photodiodes , 1977 .

[6]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[7]  Measurements of the statistics of excess noise in separate absorption, grading and multiplication (SAGM) avalanche photodiodes , 1984 .

[8]  K. Johnson,et al.  High-speed photodiode signal enhancement at avalanche breakdown voltage , 1965 .

[9]  C. Fujihashi Dark-current multiplication noises in avalanche photodiodes and optimum gains , 1987 .

[10]  V. Diadiuk,et al.  Avalanche multiplication and noise characteristics of low‐dark‐current GaInAsP/InP avalanche photodetectors , 1980 .

[11]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[12]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[13]  B.E.A. Saleh,et al.  Time and frequency response of the conventional avalanche photodiode , 1986, IEEE Transactions on Electron Devices.

[14]  S. R. Forrest Chapter 4 Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems , 1985 .

[15]  K. Brennan Comparison of multiquantum well, graded barrier, and doped quantum well GaInAs/AlInAs avalanche photodiodes: A theoretical approach , 1987 .

[16]  T. Mikawa,et al.  InP/InGaAs buried-structure avalanche photodiodes , 1984 .

[17]  J. O'Reilly,et al.  Analysis of the influence of dark current on the performance of optical receivers employing superlattice APDs , 1988 .

[18]  K. Brennan Calculated electron and hold spatial ionization profiles in bulk GaAs and superlattice avalanche photodiodes , 1988 .

[19]  F. Capasso,et al.  The graded bandgap multilayer avalanche photodiode: A new low-noise detector , 1982, IEEE Electron Device Letters.

[20]  F. Capasso Chapter 1 Physics of Avalanche Photodiodes , 1985 .

[21]  Bahaa E. A. Saleh,et al.  Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes , 1986 .

[22]  J G Rarity,et al.  Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching. , 1986, Applied optics.

[23]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.