Measurements of the terrestrial dust influx variability by the Cosmic Dust Experiment

[1]  M. Horányi,et al.  Simulation of polyvinylidene fluoride detector response to hypervelocity particle impact , 2010 .

[2]  M. Horányi,et al.  First results from the Venetia Burney Student Dust Counter on the New Horizons mission , 2010 .

[3]  M. Horányi,et al.  Polyvinylidene fluoride dust detector response to particle impacts. , 2010, The Review of scientific instruments.

[4]  James M. Russell,et al.  The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: Cloud morphology for the northern 2007 season , 2009 .

[5]  James M. Russell,et al.  The solar occultation for ice experiment , 2009 .

[6]  James M. Russell,et al.  The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results , 2009 .

[7]  M. Lankton,et al.  The Student Dust Counter on the New Horizons Mission , 2008 .

[8]  D. Marsh,et al.  Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere , 2008 .

[9]  Jonathan T. Fentzke,et al.  A semi‐empirical model of the contribution from sporadic meteoroid sources on the meteor input function in the MLT observed at Arecibo , 2008 .

[10]  M. Rapp,et al.  Global and temporal distribution of meteoric smoke : a two-dimensional simulation study , 2008 .

[11]  Gary E. Thomas,et al.  Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities , 2006 .

[12]  D. Janches,et al.  Observed diurnal and seasonal behavior of the micrometeor flux using the Arecibo and Jicamarca radars , 2005 .

[13]  Helmuth Spieler,et al.  Semiconductor Detector Systems , 2005 .

[14]  Diego Janches,et al.  Initial altitude of the micrometeor phenomenon: Comparison between Arecibo radar observations and theory , 2005 .

[15]  Warren R. L. Cairns,et al.  Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice , 2004, Nature.

[16]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[17]  S. Solberg,et al.  Meteoroid velocity distribution derived from head echo data collected at Arecibo during regular world day observations , 2004 .

[18]  Neil McBride,et al.  Dust Measurements in the Coma of Comet 81P/Wild 2 by the Dust Flux Monitor Instrument , 2004, Science.

[19]  J. Plane,et al.  Atmospheric chemistry of meteoric metals. , 2003, Chemical reviews.

[20]  M. Nolan,et al.  On the geocentric micrometeor velocity distribution , 2003 .

[21]  H. Gursky,et al.  The Space Dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft: II-results from the first 16 months of flight , 2001 .

[22]  J. A. Simpson,et al.  The Space Dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft: I - instrument description , 2001 .

[23]  John D. Mathews,et al.  The micrometeoroid mass flux into the upper atmosphere: Arecibo results and a comparison with prior estimates , 2001 .

[24]  M. Rapp,et al.  Modelling of particle charging in the polar summer mesosphere: Part 1—General results , 2001 .

[25]  M. Rapp,et al.  Modelling of particle charging in the polar summer mesosphere: Part 2—Application to measurements , 2001 .

[26]  D. Murphy,et al.  Ablation, Flux, and Atmospheric Implications of Meteors Inferred from Stratospheric Aerosol , 2001, Science.

[27]  Olga V. Kalashnikova,et al.  Meteoric smoke production in the atmosphere , 2000 .

[28]  Mahoney,et al.  In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers , 1998, Science.

[29]  John Y. N. Cho,et al.  An updated review of polar mesosphere summer echoes: Observation, theory, and their relationship to noctilucent clouds and subvisible aerosols , 1997 .

[30]  D. Brownlee,et al.  A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust , 1993, Science.

[31]  John Y. N. Cho,et al.  Polar mesosphere summer radar echoes: Observations and current theories , 1993 .

[32]  A. Tuzzolino PVDF copolymer dust detectors: particle response and penetration characteristics☆ , 1992 .

[33]  R. Goldstein,et al.  Rings of Earth , 1992 .

[34]  R. Goldstein,et al.  Radar detection of centimeter‐sized orbital debris: Preliminary Arecibo observations at 12.5‐CM wavelength , 1992 .

[35]  D. Brownlee,et al.  The flux of meteoroids and orbital space debris striking satellites in low Earth orbit , 1986, Nature.

[36]  J. Simpson,et al.  Polarized polymer films as electronic pulse detectors of cosmic dust particles , 1985 .

[37]  R. Turco,et al.  Noctilucent clouds: Simulation studies of their genesis, properties and global influences , 1982 .

[38]  R. Turco Erratum: Effects of meteoric debris on stratospheric aerosols and gases , 1981 .

[39]  Richard P. Turco,et al.  Smoke and Dust Particles of Meteoric Origin in the Mesosphere and Stratosphere , 1980 .

[40]  C. Leinert Zodiacal light — A measure of the interplanetary environment , 1975 .

[41]  R. Vondrak,et al.  Observations of Birkeland currents at auroral latitudes , 1975 .

[42]  V. Radeka Signal, Noise and Resolution in Position-Sensitive Detectors , 1974 .

[43]  J. Schwanethal Debris in-orbit evaluator (DEBIE) calibration and data analysis , 2004 .

[44]  Susumu Toda,et al.  Orbital debris: A technical assessment , 1995 .

[45]  D. Kessler,et al.  Characterization of the orbital debris environment from Haystack radar measurements , 1995 .

[46]  D. Brownlee,et al.  Heating and thermal transformation of micrometeoroids entering the Earth's atmosphere , 1991 .

[47]  D. Brownlee,et al.  Lunar microcraters - Implications for the micrometeoroid complex , 1975 .